Turn Recycled Plastic into 3D Printing Filament

Sustainable Problem: Waste

As we’ve established, humans produce a lot of trash – apparently of the more than 300m tons of plastic produced globally every year, one refuse truck’s worth ends up in our waters, landfills and streets every minute.

Technology:

  • Reflow converts recyclable plastic into 3D printing filament using open source technology.
  • Reflow filament is made from recycled PET bottles collected in developing regions, and revenues from the filament go back to the waste collectors who gather these bottles, which the company claims can increase their income by up to 20 times.
  • The market for 3D printing filament – the majority of which is made from virgin plastic – is growing rapidly. A recent report predicted the 3D printing materials market will grow by nearly 266% in the next five years.
  • 3D printing seems to be offering the developing world is employment – there are an estimated 15 million people globally who currently make their living from waste picking

Stakeholders:

  • Reflow
  • Waste Collection Companies
  • Artists
  • Designers
  • Various Printing Companies

Deployment/Implementation:

  • set up a production facility at a local rubbish dump, where waste pickers convert high-density polyethylene (HPDE) – mostly used for plastic bottles – into 3D printing filament to eventually be sold to 3D printing companies.
  • Marketing campaign
  • Introduce into different societies at different levels due to so many variations

Different uses of recycled plastics in 3D Printing!

3D Plastics 3

Joshua Harker is an American artist and pioneer in 3D printed art and sculpture whose work has appeared in countless galleries, collections, publications and platforms worldwide, making him perhaps the most acclaimed 3D artist alive today. His work pushes the limits of form and dimensions to share his unique vision. He incorporates digital tools, software, technology as well as traditional mediums into his work to create art that is fresh, cutting edge and timeless.

3D Plastics 4

 

Deze Straver is an Amsterdam based graphic designer who does not enjoy writing about himself but does love to work with digital imagery, visual language, shapes and movement. His recent works explores the human form in eerie shape shifting fashion.

 

 

Sources:

https://www.theguardian.com/sustainable-business/2017/jan/01/sustainable-technology-2016-climate-change-environment

https://www.ptonline.com/blog/post/startup-turns-recycled-plastic-into-3d-printing-filament-

http://reflowfilament.com/gallery.html

Comments to greentechsmartcities: It is fascinating what some people can do with garbage and plastic waste. The art collective Luzinterruptus has a history of tackling political and social issues in Europe. The “Labyrinth of Plastic Waste” is but one example. “We were looking to demonstrate, in a poetic manner, the amount of plastic waste that is consumed daily,” Luzinterruptus explained in a statement. “In addition to focusing attention on the big business of bottling water, which leads to very serious problems in developing countries, whose citizens have watched as their aquifers have been privatized with impunity for the exclusive enrichment of large business owners and ruling classes without scruples.”

https://vimeo.com/100256751

UNI:  AV2698

 

Advertisements

Sensor-Packed Pedestrian Crossing

Crossing1Crossing2

Sustainable Problem: Civic Engagement, Safety

Sensor-packed pedestrian crossing is fit for a modern city

Technology:

  • A prototype LED crossing uses sensors to respond to the movement of vehicles, cyclists and pedestrians
  • “We’ve been designing a pedestrian crossing for the 21st century,” says Usman Haque, Umbrellium‘s founding partner. “Crossings that you know were designed in the 1950s, when there was a different type of city and interaction.”
  • This smart crossing doesn’t just look more modern than the 60 years old versions; it uses machine learning to make the crossings safer. Figures from the Transport Research Laboratory show that 7,000 incidents happen on them each year in the UK.
  • The actual crossing doesn’t exist until it’s safe for you to cross – then LED patterns appear to direct people and stop cars.
  • The machines could also learn to project the crossing at a slightly different orientation if, for instance, everyone makes a beeline for a certain shop after a school days.

Stakeholders:

  • Umbrellium
  • Insurance Firm – Direct Line
  • Cities

Deployment/Implementation:

  • The project is still some way from completion.
  • To speed up the process, the code behind it is being made open source.
  • Deploy when figure logistics of implementation are figured out
  • Have multiple detection systems, to be fail safe such as version that has a pressure sensor which detects where footsteps are.

Sources:  http://www.wired.co.uk/article/digital-pedestrian-crossing-technology-machine-learning-safety

Comments to: World’s First and Largest Vacuum Air Cleaner #BT2443

The results confirm that the tower captures and removes up to 70% of the ingested PM10 and up to 50% of the ingested PM2.5. For a tower in an open field in calm weather, this provides PM10 reductions up to 45% and PM2.5 reductions up to 25% in a circle with diameter of more than 20 m around the tower. When the tower is applied in semi-enclosed or enclosed courtyards, the beneficial effects can be much larger. These statistics are astounding to me and these towers can help many people in very polluted areas.

UNI:  AV2698

TIDAL ENERGY

tidal 4

Tidal power or tidal energy is a form of hydro-power that converts the energy obtained from tides into useful forms of power, mainly electricity. Although not yet widely used, tidal energy has potential for future electricity generation. Tides are more predictable than the wind and the sun.

Sustainable Problem: Energy

Technology

Tidal power or tidal energy is a form of hydrophone that converts the energy obtained from tides into useful forms of power, mainly electricity. Although not yet widely used, tidal energy has potential for future electricity generation. Tides are more predictable than the wind and the sun.

  • Potential: Worldwide potential for wave and tidal power is enormous, however, local geography greatly influences the electricity generation potential of each technology. Wave energy resources are best between 30º and 60º latitude in both hemispheres, and the potential tends to be the greatest on western coasts.

tidal2

  • One type uses floats, buoys, or pitching devices to generate electricity using the rise and fall of ocean swells to drive hydraulic pumps.
  • A second type uses oscillating water column (OWC) devices to generate electricity at the shore using the rise and fall of water within a cylindrical shaft. The rising water drives air out of the top of the shaft, powering an air-driven turbine.
  • Third, a tapered channel, or over topping device can be located either on or offshore.

tidal1

Stakeholder:

  • Smart Growth Companies
  • Institutions or Companies that use energy
  • Utility Companies

Deployment/Implementation

  • Develop technology fully and attract investors
  • Make technology most efficient
  • Implement into society at different levels
  • Marketing Campaign

http://www.rnp.org/node/wave-tidal-energy-technology

UNI: AV2698

Comments to Wakati : Keep food fresh using solar power by RS3686 by AV2698 :

Unlike a refrigerator, the Wakati does not control temperature and, therefore, cannot store fruit and veg for long-term periods. Wakati have shown that a one or two-day shelf-life in a hot climate can be increased to 10 days. In developing countries this can be significant because some food will not go to waste and some companies can even profit.

LEAF PLATES

leaf6leaf3

Sustainable Problem: Waste

According to Time magazine, Americans throw away an estimated trillion disposable plates and utensils per year.

Technology:

  • Brand Name: Leaf Republic
  • Focus on food packaging and one-way dishes
  • Claim: outdoor tableware has to be fully renewable and fully biodegradable.
  • Packaging products consist of a lid made from bioplastic or recycled plastic and a three-layer natural bowl made of
    • Leaves
    • water-proof leaf-made paper
    • Leaves

Plates1

  • No synthetic additives, no coloring, no glue – and no tree has been cut! Additionally, the bowl is biodegradable in only 28 days.
  • These actions lead to building up a sustainable, social, gainful company

Stakeholder:

  • Leaf Republic
  • Their Partners such as: Vivas.bio, Bird&Bird, Dachser, Infiana, Makerspace, LMU, Illig, Stoeger, Huber+Suhner, Steuerkanzlei Kisslinger-Popp
  • Institutions or Companies to use the products
  • Community

Deployment/Implementation

  • Fund the project to obtain more pressing machinery
  • Find local sources needed for leaves
  • Obtain contracts with universities and/or companies
  • Get community involved, maybe gather the leaves
  • Marketing Campaign

Sources:

http://leaf-republic.com/
http://content.time.com/time/specials/2007/article/0,28804,1706699_1707550_1846340,00.html

Comments to Off grid solar powered water device – Zero Mass Water by JV2610

  • A unit with one solar panel, the company says, can produce two to five liters of liquid a day, which is stored in a 30-liter reservoir that adds calcium and magnesium for health and taste. This seems very energy efficient and seems to be able to store a pretty good amount. The addition of electrolytes is even more interesting and beneficial for health.

UNI:  AV2698

HOT SOLAR CELLS

Sustainable Problem: Energy Efficiency

By converting heat to focused beams of light, a new solar device could create cheap and continuous power.

Technology:

  • A solar power device that could theoretically double the efficiency of conventional solar cells
  • The new design could lead to inexpensive solar power that keeps working after the sun sets
  • Availability:10 to 15 years
  • Standard silicon solar cells mainly capture the visual light from violet to red. That and other factors mean that they can never turn more than around 32 percent of the energy in sunlight into electricity. The MIT device is still a crude prototype, operating at just 6.8 percent efficiency—but with various enhancements it could be roughly twice as efficient as conventional photovoltaics

//player.ooyala.com/static/v4/candidate/latest/skin-plugin/iframe.html?ec=UzZ3d3OTE6xo2XZwn7IywnK6bG9JCTVu&pbid=5ad1946db28d45cdb4325c91c7751266&pcode=FvbGkyOtJVFD33j_Rd0xPLSo0Jiv

Stakeholder:

  • David Bierman, Marin Soljacic, and Evelyn Wang, MIT
  • Vladimir Shalaev, Purdue University
  • Andrej Lenert, University of Michigan
  • Ivan Celanovic, MIT

Deployment/Implementation

  • Develop technology fully and attract investors
  • Make technology most efficient
  • Implement into society at different levels

Sources:
https://www.technologyreview.com/s/603497/10-breakthrough-technologies-2017-hot-solar-cells/

Comments to Fully Circular Furniture by ETG2132:

Circularity is embedded into the design of each and every Pentatonic piece — product components aid in the construction of each piece, eliminating the need for complicated assembly processes and chemical-laden glues and resins, while also minimizing unnecessary waste. What’s more, post-consumer materials are matched to products based on their unique properties and application possibilities.

UNI: AV2698

DRONE INSPECTION + AERIAL PHOTOGRAPHY – Week 2

Drone1drone2drone3

 

Sustainable Problem: Agriculture/Infrastructure/Public Safety Solutions by Drones with sensors part of the Energy and Waste, and Agricultural sectors

Technology:

  • Sentera drone sensors deliver unrivaled performance and consistently beat competitors in price, quality and function. Sensors produce high-quality, context-rich color and near-infrared (NIR) image data to deliver unsurpassed NDVI data to growers.
  • The Sentera Double 4K is a small, fully customizable twin-imager sensor that is universally compatible with any UAV. Fitting in the footprint of a GoPro® HERO 4, the rugged, high-throughput Double 4K Sensor is designed for use in harsh environments with configuration options that make it ideal for use in agriculture and infrastructure inspection applications. Both cameras are capable of capturing high-megapixel color stills, near-infrared (NIR), and normalized difference vegetation index (NDVI) data, and 4K video.
  • The intelligence provided by this sensor makes it ideal for Universities, researchers, large growers, and advisors to provide high-precision, low-distortion vegetative health data tailored for unique applications.
  • Use the mobile app to document + precisely locate weeds, compaction, growth stages + more. Photos live with aerial data to give you a complete picture of your operation, top to bottom. Our iOS mobile app also allows you to autonomously fly a host of DJI products!

Stakeholder:

  • Sentera Company
  • Farmers/Agriculture sectors
  • Energy Companies/Sector
  • Universities
  • Community

Deployment/Implementation

  • Attract more investors for the drones and sensors from different sectors
  • Advertise all the different capabilities across all sectors of the drones and sensors emphasizing agriculture and infrastructure inspection applications
  • Train buyers in implementing the most sustainable solutions tailored to their needs

Sources:
https://sentera.com/
http://www.precisionag.com/specialty-crops/ag-drone-update-the-chase-for-1000-opinion/

 

UNI: AV2698

Let’s Conquer E-Waste!

ecoatm

90% of Americans own a cellphone, yet only about 20% of unwanted cell phones are recycled each year!

Technology

  • ecoATM is a self-serve kiosk buying back electronics from consumers using patented, advanced machine vision, electronic diagnostics, and artificial intelligence to evaluate products

The Simple Three Step Process

  • Recycling your old phones, MP3 players and tablets doesn’t have to be a hassle. We want to make ecoATM the most convenient way for you to leave a positive impact on the planet while also putting a little cash in your pocket.

eco1

  • Place your device in the ecoATM test station.

eco2

  • The ecoATM will examine your device and then search for the highest price we can find in a network of buyers.
  • The kiosk prices each individual device based on model, condition and the current value on the market.

eco3

  • If you agree to sell it, you will receive cash on the spot.
  • Get green for getting green!

Sources: https://www.ecoatm.com/how-it-works/ 

https://finance.yahoo.com/news/used-smartphone-205312451.html

Stakeholders

  • ecoATM company
  • Electronic companies/investors
  • Community

Deployment/Implementation

  • Attract more investors and pair up with electronic companies who will be able to reuse and recycle the devices
  • Increase advertising budget and make consumers aware of the technology by increasing the number of ecoATMs situated in malls and various locations
  • Develop strong partnerships with leading organizations to further change and advance solutions to the e-waste challenge

 

UNI: AV2698