Solar Tree

Screen Shot 2017-11-30 at 4.35.30 PM

Sustainable Problem: Energy, Public Space

The Solar tree is designed to promote awareness of sustainability within the community. It is a public facility with high-speed WiFi internet. The solar tree can provide clean energy and has a high educational value for the community.

Sustainable Technology:

– Qualification for wind speeds up to 175 MPH
– Flexible configuration and orientation
– High-performance powder coat in over 200 colors
– Integration with beautiful, efficient Lumos solar modules
– Assembly in one day or less

Stakeholders Involved: Community Authorities, Utility Companies, Solar Panel Companies, General Public

Steps in Deploying the Technology:

  1. Mapping areas where the Solar Trees could be deployed
  2. Partnership with existing tech company to develop the technology
  3. Working with designers to design the solar tree
  4. Contract with local communities to implement the solar trees

Source: https://inframarks.nl/solar-tree/

Comment on another post: 

https://makeasmartcity.com/2017/10/12/using-drones-to-monitor-air-pollution/comment-page-1/#comment-1525

UNI: QS2162

Advertisements

Public Rooms + Tech (week 11)

Problem: People are not using public spaces.

People are tired of government initiatives trying to improve public spaces by only adding more soccer fields or parks.  Human Center Desing of public spaces led Solar4Revolution to create public smart rooms built under vulnerable people’s need (the real ones). While parks and soccer fields are crucial in providing public spaces for relaxing and to use it unlimited and free-advertising areas, the new approach looks for building public spaces to provide complementary areas for vulnerable people restricted at home to live comfortable.

Imagine a kid at 7 p.m. It is time for working on the school assignment. A single mother, after working 9 hours in downtown coming back to home and look at the kid ready to a) watch TV or b) work on the assignments. Watching TV sometimes is simple because is a matter of turning a device on. Doing homework relies on having a comfortable space, lighted enough, warm enough during summer and cool enough during winter, having tool for researching online (wifi), a computer, etc. This is an example of how to use the public smart rooms to provide a small family from a vulnerable zone a space for doing what they would do at home but in a public space.

The public smart room model requires a couple of them per street at each block in vulnerable areas. It has a registering process, first come first serve, but limited for purposes. The rooms are energized by the use of solar technology, batteries to work until 11 p.m. It has a transparent shape and it has responsive features to provide a space that address people’s needs. For seniors, it provides one service, for young people too, as well as for adults. The key is to be flexible and responsive enough to provide all the people living in vulnerable areas a comfortable space that invite to navigate the neighborhood at night. Figure 1 shows 2 models analyzed to be deployed.

model 1

Figure 1: Architecture for public rooms.

The technological aspects of public rooms are the challenges of how smart we can make them. Technology for public smart rooms follows three steps. First, using technology for data collection and therefore understand people’demands. Second, using existent tech solutions to provide the rooms an smart sense for interacting people. Finally, once data collected is analyzed and share with experts, it is time to be creative and built or improve the rooms to be human center designed.

Implementation:

Find a neighborhood where people have no incentives to use public spaces.

Agree in implementing a prototype.

Raise funds for investing in the deployment of the new infrastructure.

 

By Gabriel Guggisberg (gg2642)

Air pollution is one of the many consequences of development citizens of newly emerging cities have to live with. Indoor air pollution is also a major problem, as it tends to be worse than outdoor air pollution (two to five times worse), raising the risk of respiratory related diseases.

The TZOA air quality monitor:

-Wearable device that constantly collects data about chemicals, particulate matter, temperature, air pressure, UV exposure, and humidity.

-Portable, highly accurate and cheap ($99-$139) way for everyday citizens to check the air quality of their surroundings daily.

-Will not improve air quality, but will provide the user with the information they need to take action.

Administrative buildings, hotels and apartment complex could include this technology in their units to get more insight when it comes to the air quality of their buildings. They can use this technology to make the necessary changes so tenants can be more comfortable.

To deploy this technology, the developers will have to provide devices to the facilities that are interested in implementing it. They will then test in in some areas of their buildings and see if the advices provided by the technology does improve their air quality. If the facilities find out that the technology is improving the quality of life of their residents, they can decide to widely deploy it through their buildings.

Link:http://plus.usgbc.org/tomorrows-technology-today/

Link to comment: https://makeasmartcity.com/2017/11/26/remote-controlled-beach-lifeguard/comment-page-1/#comment-1520

Desalination 2.0

Water independence and source reliability is a very pressing issue that many communities are facing today. One of the many solutions that is being adopted today is to build desalination plants to turn sea water into drinkable water. However, building these plants and the process that is desalination can be very expensive. An average desalination plant can cost up to a billion dollars.

A new technology that could ensure cheaper desalination would be Advanced Water Recovery.

-Uses chemicals to turn salt water into drinking water and then, through proprietary process, filters the chemicals back out.

-Costs 70% less than current technologies used for desalination

-A demonstration plant is currently being built in Pennsylvania, cleaning the water used in the fracking process.

Organizational stakeholders that would need this technology would be American states that are looking to become water independent, such as California that is currently looking to build a second desalination plant, that would cost the state millions. The upcoming plant has caused a debate over the real need for such expensive technology for water production.

To deploy the technology, the firm would list and present the advantages this technology has over traditional  desalination plants (safer for marine life, cheaper), to the state government and officials who would authorize this technology to be widely used. Once their demonstration plant is complete, these officials will be able to see and experience first hand what they could be enjoying in their own state.

Link: http://money.cnn.com/2015/06/02/technology/water-cleaning-technology/index.html

Link to comment: https://makeasmartcity.com/2017/11/27/light-manipulating-algae-could-boost-solar-power-technology/comment-page-1/#comment-1518

Can air pollution be controlled by drones?

1) Air pollution is referred to any contamination of the indoor or outdoor environment that modifies the characteristics of the atmosphere. Although more research is required to further understand the role poor air quality and multi-pollutant exposure plays in health. According to the World Health Organization (WHO) in 2012, an estimated 6.5 million deaths were associated with indoor and outdoor air pollution together, this r4epresents 11.6% of all global deaths.

Major sources of air pollution vary from country to country and in every city, depending on their infrastructure and industrial activities, but in general, common sources include motor vehicles, household combustion devices and waste burning, coal-fired power plants, and industrial activities.

Pollutants of major public health concern include particulate matter, carbon monoxide, ozone, nitrogen dioxide and sulfur dioxide. (EPA)

The most relevant issue in this problem is that once the pollution has been produced it is very difficult to clean because of dispersion, and while reducing the pollution production is a relatively simple solution ( through filters and catalytic combustion, etc) once the pollution is diffused in the environment, it becomes a very complex problem to solve, mainly because of the dimension of it. In other words, it is impossible to clean all the air in the atmosphere. china-may-use-drones-to-kill-the-smog-problem

2)Nonetheless, China is investing a large quantity of money to fix this difficult problem, and many innovative solutions are being implemented, such as air purifiers the size of buildings, or mist cannons that nebulizer liquids to trap harmful particles, but still, these solutions face the great challenge of diluted pollution and large dimensions.

A novel solution that is being tried is the smog-busting drones, the idea is to use drones to spray chemicals [liquid nitrogen],  to solidify pollutants in the air and fall to the ground.

“When liquid nitrogen is dispersed in air, it readily absorbs heat from the surrounding atmosphere, causing water vapor to instantly condense. The condensate would drag down particulate matter along with it as it falls to earth” Emily Carino-postdoctoral researcher in chemical engineering with a PhD from the University of Texas

The chief executive of the company, Ma Yongsheng, he explained that drones have a reach of 5km and can carry 700 kg of smog-clearing chemicals, and have conducted over 100 hours of testing flight. [South China Morning Post]

Nonetheless, there is a big international opposition to this approach of geoengineering, mainly because of two postures, exposed by Emily Carino, from the University of Texas.

The first one is the effect that this chemical rain can have on citizens. “Used improperly, liquid nitrogen is dangerous: It can cause severe cold burns if it comes in contact with skin, and items cooled by liquid nitrogen can stick fast to human skin when touched.”

And the second is the risk of the unintended consequences of such chemical reaction, not only because the reaction occurs so quickly, but also because nitrogen outperforms all other agents during the reaction.

3) This technology is mainly to be deployed by the government since air pollution or air quality is a public good.

4) The steps to deploy this technology are to run a pilot and have an important and solid baseline to compare the improvements as well as the unintended consequences.

Nonetheless, I am very skeptical about the impact of this technology application due to the unintended consequences, and most importantly it is important to point out the irrational thinking of creating rain from pollutants, instead of deploying filters and air pollution control systems in the industry and combustion vehicles.

 

Images sources: Image 1, Image 2

A Bay Area Startup Spins Lab-Grown Silk

 

silk1. Sustainability Problem: Climate Change (Carbon Intensity of Production) 

The apparel industry is one of the most unsustainable in the world, requiring heavy use of raw materials (water, land,etc.) and chemicals (dyes, coatings, finishes) , while also generating excessive waste because clothes are not made to be recycled. The production of polyester, a fabric made from petroleum/plastic, has increased almost sixfold from 1980 to 2007, and is incredibly carbon intensive.

 2. Solution

  • Bolt Threads, a startup out of the University of California San Francisco, studied spiders to understand how they produce webs, and has essentially used bio-mimicry to develop a newer, more sustainable way of producing fabric.
  • The main input is sugar from plants that are grown, harvested, and replanted. They have the same chemistry as silk from spiders/silkworms, but are man made
  • They studied silk proteins found in nature, develop proteins inspired by the natural silks by putting genes into yeast, and then produce the proteins in large quantities through fermentation. Bolt then takes the silk proteins and spins it into fibers, and the fibers into fabrics and garments

 3. Stakeholders

  • Bolt Threads
  • Investors
  • Manufacturer & procurement partners
  • 3rd party fabric users

 4 .Implementation Steps

  • Understand clothing pieces (i.e. athletic-wear, mens suits, etc?) that will be the most natural fit for this fabric
  • Produce the garments, set up direct to consumer marketplace
  • Partner with companies trying to be more sustainable who are interested in using fabric at a larger scale

Sources

https://www.bloomberg.com/news/articles/2015-06-03/a-bay-area-startup-spins-lab-grown-silk

https://boltthreads.com/technology/ 

JM4202

Comment on: World’s First 100% Compostable Water Bottle, Cap, & Label | This is a good innovation that can help the situation we are in. The bottle  technology has been around for a little while, the but company needed to develop the cap, as that was a roadblock for many industrial composters to start accepting the item.

As a frequent composter, I would like to know more about how the company expects to differentiate these bottles from others that are green – i.e Sprite, as to  not confuse those who are not careful about where they put their trash. Additionally, would be great to understand the ideal compost conditions for the 85 day compost time. If we start to get more and more ‘plastics’ and less organics in the compost, will that increase?

 

 

Remote Controlled Beach Lifeguard

Issues: health, safety, mobility, public administration service

Solution: This Remote Controlled Beach Lifeguard is designed to assist beach lifeguards in their task of beach and water surveillance. It was positioned on a patrol tower and stands higher than the beach crowd to get a clear overview of the area. When employed, it flies overhead for ground patrol and serves as co-rescue equipment when swimmers, surfers, and other water sports participants are in danger. This charging patrol tower can also be installed on the back of the lifeguard’s pick-up truck. It can recharge itself at the patrol tower, as well as by solar power. When hazard happens, the lifeguard and the remote-controlled assistant will make their way to the victim’s location, and the assistant serves as a surfboard. The lifeguard can control the board to pull the victim back to the coast.

Stakeholders involved: Technology companies, Beach Police, Beach users

Implementation: 

  1. Investors raise funds to develop the technology
  2. Manufactures make mass production
  3. Contract with beach police department to deploy this product

Source: https://www.droneflit.com/news/amphibious-joint-lifeguard-uav-takes-to-the-beach/

Comment on another post:

https://makeasmartcity.com/2017/11/26/monitoring-tech-for-sleeping-babies/comment-page-1/#comment-1510

UNI: QS2162