Turning Climate Pollution Into Fish Feed

 

p-1-this-startup-turns-climate-pollution-into-ingredients-for-fish-feed

Area of focus: Safety and Health

Description:

Overfishing is a global issue that causes environmental and social problems. From an environment standpoint, it not only affects fish stocks around the world which are declining at an alarming rate but also represent an important source of water pollution due to massive fishing boats deployed in various locations. Those big scale exploitations then affect small scale fishermen by decreasing the amounts of fish reaching the coasts. Also, a lot of fish caught by the bigger boats are exported, leaving local population with a reduced quantity of food available.

One of the drivers of overfishing is the need for small fish used as feed (usually for bigger fish productions and livestock).  As the Fast Company’s article mentions : “NovoNutrients wants to replace that fish food with something more sustainable: microbes grown with carbon dioxide”.

The company uses carbon dioxide to feed microbes that become protein used for animal feed production. A pipe is connected to water where the gases are dissolved.

During the process, Hydrogen is also being produced thru (solar-powered) hydrolyse which helps power the installation.

Sources:

https://www.novonutrients.com/

https://www.fastcompany.com/40480856/this-startup-turns-climate-pollution-into-fish-feed

http://www.allaboutfeed.net/New-Proteins/Articles/2017/8/More-fish-meal-but-growing-interest-in-alternatives-165917E/?cmpid=NLC%7Callaboutfeed%7C2017-08-02%7CMore_fish_meal,_but_growing_interest_in_alternatives#comments

 

Stakeholders :

  • Animal feed manufacturing companies
  • Livestock and aquaculture farms
  • Government officials

Implementation:

  • Research countries with the highest concentration of aquaculture farms
  • Approach farmers to show them the product
  • Work with government officials to integrate the use of the product in best management practice guides for farmers

Other technology:  Fighting fire with math and maps (https://blog.nature.org/science/2016/08/03/technology-to-the-rescue-for-foresters-in-the-thick-of-it/)

This technology is interesting as it could help cities with diseases spreading among trees. By mapping the type of trees available around the city, officials would be able to better diversify the kind of new trees planted making “greening” efforts more efficient.

 

Advertisements

Indian firm makes carbon capture breakthrough

1) Sustainability Problem:

Excess CO2 contributing to a greenhouse effect and global warming.
Category: Energy

2) Technology Summary:

  • A coal-fired power plant in southern India can now capturing carbon at industrial scale without subsidy
  • Unlike the well known CCS process, the plant is converting captured storage into baking soda. This is known as Carbon Capture and Utilization (CCU)
  • CarbonClean, the inventor, has developed a new, more efficient chemical process which reduces operations and initial fixed costs
  • CO2 capture capacity: 60,000 tons of CO2 per year
Article: Indian firm makes carbon capture breakthrough
Website: The Guardian
Tags: #CCS #CCU #technology #GHG

3) Organizational stakeholders

  1. Merchant power generators
  2. Utilities
  3. Chemical process raw material manufacturers
  4. Energy regulators

4) Steps in deploying this technology

  1. Identify wider customer base for CO2 chemical raw material
  2. Identify price at which CO2 can be profitably removed
  3. Attracting financing for this technology
  4. Expand production of the new CO2-stripping chemical
Uni: jz2805

Algae Scampi

NWF+shrimpProblem: Carbon emissions
People love to eat shrimp, but some estimates place their carbon impact as higher than even beef, mostly due to the destruction of natural habitats near shrimp farms.

Technology: Algae Shrimp

  • New Wave Foods has developed a highly realistic synthetic shrimp that is made out of algae, which is ubiquitous and solidly occupies a bottom rung on the food chain.
  • Algae needs only sunlight, water and CO2 to grow. In contrast shrimp are fed wild-caught fish. Producing 1 pound of shrimp is estimated to use up three pounds of fish.
  • Algae uses CO2 to perform photosynthesis, serving to convert carbon into useable, sequestered energy (food calories).
  • Scientists analyzed and mimicked the molecular structure of shrimp flesh in order to create a realistic substitute out of red algae.
  • The shrimp industry globally utilizes a lot of slave labor, particularly for removing the shells and appendages. Algae shrimp does not require anything preening, which could eliminate the worst labor practices.

Stakeholders:
Early adopters including Google’s cafeteria
New Wave Foods
Investors

Steps to implementation:
1) Run pilot at Google cafeteria.
2) Perform sustainability analysis of algae farms and production plants.
3) Develop campaign to fight misconceptions of algae as food.

Google’s Famous Kitchens May Serve Fake Shrimp Made of Algae

CO2NCRETE – Researchers turn carbon dioxide into sustainable concrete

Sustainability Problem:

Over 30 billions tons of concrete are produced every year. Cement, main component of concrete, emits 0.8 tons of CO2 per ton of cement produced. This is about 7% of total global CO2 emissions. First source comes from CO2 released from limestone to produce lime. The second source is from lime and clay being heated to 1450 degrees celsius to make cement. UCLA research is trying to create a close loop process.

Technology:

  • CO2 released from limestone to produce lime gets captured
  • CO2 is then separated from gas stream by membrane
  • CO2 is integrated into building material

Stakeholders:

  • Citizens
  • Government
  • Construction Companies

Steps to Deploy Technology:

  1. Develop scalable technique for 3D-printing
  2. Integrate all processes into a pilot facility
  3. Optimize process parameters

 

 

 

 

Starbons produced from waste biomass outperform conventional solid-state carbon capture materials

1. Sustainability Problem

Energy and climate: in order to mitigate the climate impacts of burning fossil fuels, power plants capture carbon dioxide from flue gases for permanent storage or alternative uses. Amine-based and other liquid absorption methods are complex and have a high parasitic energy load (considerable energy is required to regenerate the material), so there is a need for highly efficient solid absorption materials.

2. Technology Article Summary

Article:
York chemists lead breakthrough in carbon capture

Published 7/04/2016 on University of York News at http://www.york.ac.uk/news-and-events/news/2016/research/starbons-carbon-capture/

  • Scientists at the University of York have developed a method for producing mesoporous carbon materials from waste biomass.
  • The process involves the carbonization of polysaccharides by heating to high temperatures – creating materials which selectively bind CO2 from a gas stream, and are easily regenerated under vacuum.
  • The properties of the “starbons” produced differ depending on the temperature and time applied to the biomass.
  • Some starbons capture as much as 65% more carbon dioxide than conventional activated carbon.

3. Organizational Stakeholders

Starbons have already been commercialized for other applications, such as catalysis and chromatographic separations, but are not yet available for carbon capture. Stakeholders in this process will include:

  • Researchers
  • Starbon Technologies
  • Owners and managers of power plants

4. Deployment

The next three stages in deploying this technology could be:

  • UoY researchers and Starbon Technologies: characterize the optimal material, and commercially produce a starbon for carbon capture
  • Power plants with solid-state carbon capture: phase in starbon to replace activated carbon
  • Power plants with liquid-state carbon capture: investigate opportunities to redesign carbon capture systems to incorporate solid capture materials

See also:

http://onlinelibrary.wiley.com/doi/10.1002/anie.201602226/full for the recent research paper.

http://www.starbon-technologies.com/ for information on the company and other applications of starbons.

 

Carbon Emissions Turned into Stone

Sustainability problem: 

CO2 released when burning fossil fuels leads to global warming

Solution:

Turn carbon capture into stone and store underground!

    • In Iceland, scientists turned carbon into stone by  pumping a power plant’s carbon dioxide into underground basalt and mixed them with water.  The process chemically solidified the carbon dioxide and changed the basalt and CO2 into a chalk like substance.
    • The solidifying process takes 2 years, whereas it was originally assumed to take decades.
    • The solidification resolves the risk that carbon stored underground as gas or slurry could accidentally be released into the atmosphere.
    • Its currently unclear whether the process could work with many types of basalt or saltwater as opposed to freshwater

Stakeholders

    • Governments trying to meet CO2 cap commitments
    • Power plants trying to limit CO2 due to regulations or cap and trade limits/incentives
    • Citizens who benefit from avoiding the impacts of global warming
    • Coastal cities/regions and other high risk localities that have to plan and pay for warming mitigation and adaption

First 3 steps for deployment:

    1. Additional studies of types of basalt and water required for the reaction (including testing factors that affect the duration of the reaction)
    2. Analysis of potential geographic locations and power plants that have the proper basalt formations and could make use of the technology
    3. Cost analysis and funding models to determine how much the technology will cost to use and which stakeholders should contribute to the costs

 

http://www.scientificamerican.com/article/scientists-turn-carbon-dioxide-emissions-into-stone-video/

Artificial Trees : A Carbon Capture Technology

Sustainability Problem: Increasing anthropogenic greenhouse gas emissions in the atmosphere causes global warming

Areas of Sustainability: Energy, Water, Waste, Safety, Health

Artist’s conception of the Columbia researchers’ artificial trees. Photo credit: Stonehaven Productions Inc.

Technology: Artificial Trees

  • In Yale Climate Connections article “Artificial Trees as a Carbon Capture Alternative to Geoengineering,” Richard Schiffman explains the “carbon capture” project of Columbia University Earth Institute scientists Klaus Lackner and Allen Wright. The technology aims to to absorb carbon dioxide using sodium carbonate in the streamers of artificial trees that look like shag rugs and scrub brushes. The researchers would like to make carbon capturing “forests” using artificial trees.
  • Each “tree”, approximately as big and with roughly the same production cost as a car, can absorb carbon produced by 36 cars in a day. It will take 10 million of these “trees” to capture 12 percent of anthropogenic greenhouse gas emissions per year. A gentle flow of water can release carbon dioxide from the artificial trees. Carbon dioxide can then be buried underground or can be used for industrial purposes.
  • This technology is not geoengineering. “It does not actively interferes with the dynamics of a system you don’t understand” according to Lackner.
  • Artificial tree proved to be one of the first technologies to be able to “remove vehicular carbon emissions from the air”.

http://www.yaleclimateconnections.org/2013/02/artificial-trees-as-a-carbon-capture-alternative-to-geoengineering/

Stakeholders:

  • Environmental engineers and scientists
  • Policymakers
  • Investors

Deployment:

  1. Accelerated research is needed to find a cost-effective way of purifying carbon dioxide and sequestering it underground.
  2. In order for this technology to be deployed in a grand scale, further  research should be done to make it cost-effective. Urgency on R & D process should be a commitment.
  3. Policies should give investors very attractive incentives in order to commit to this technology.