Going back to your roots with Electricity-free Groundfridge

  1. Technology (http://inhabitat.com/groundfridge-lets-you-store-perishables-without-traditional-refrigeration/)

The Groundfridge created by Floris Schoonderbeek (the founder of Weltevree) is an innovative take on a traditional root cellar. The technology uses the insulating effect of soil and the cooling effect of groundwater. The temperature in the fridge remains stable year-round between 10 and 12° C (50 to 54° F). This is the ideal temperature for storing fruits, vegetables, wine and cheese. The unit has a storage capacity of 3,000 litres, which can hold the contents of 20 (European) refrigerators, that store 500 kg of food. This is equivalent to the harvest of a 250 m2 vegetable garden, which is enough to prepare 350 meals to feed a family of 5.


  1. Sustainability Problem

With excess consumption and waste plaguing the food industry, this technology is part of a concept meant to encourage the modern homeowner to grow and store their own produce for a modern self-sufficient existence. It meets the requirements of people with their own vegetable garden, who choose to live in a modern and self-sustaining way.

Furthermore, the unit is electricity-free – another element of the Groundfridge which helps consumers reduce their impact on the environment. On average, 20 A grade EPC (Energy Performance Certificate) Refrigerators combined, use 6,620 kWh annually. The Groundfridge performs the same feat completely without any electricity.

  1. Stakeholders
  • Urban farmers
  • Community garden owners
  • Consumers
  • Restaurant Industry
  1. Implementation Process

This product has a relatively exclusive reach due to its high cost (approximately $10, 000). It is currently being released to early-adopters in Belgium and the Netherlands and plan to go abroad by the end of 2016. I feel that the restaurant industry with larger budgets (especially the farm-to-table concept) may also be a viable avenue for the creators to explore, combining their sustainable approach to food storage with the idea of local sourcing and environmentally-conscious food consumption.

However the cost-savings associated with reduced electricity-use may eventually be able to offset the high upfront cost of the unit. The creators could also look into certain financing options which take into account the payback time.

As far as the technology is concerned, the feasibility of operations should also be explored in other climates. This, as well as high costs are some of the barriers to implementation.



Off Grid World, Electricity-free Groundfridge Lets You Store Produce Without Traditional Refrigeration: https://www.offgridworld.com/electricity-free-groundfridge-lets-you-store-produce-without-traditional-refrigeration/

Weltevree, Groundfridge: http://www.weltevree.nl/US/collectie/groundfridge

Treehugger, Get back to your roots with the Groundfridge prefab root cellar: http://www.treehugger.com/kitchen-design/get-back-your-roots-groundfridge-prefab-root-cellar.html

Osmotic Power: A new source of clean energy

Sustainability Problem

The impacts of climate change are clearly visible in this day and age. Rising temperatures as a result of CO2 emissions from fossil fuels such as oil, coal and natural gas will only add to this problem.

Sustainable Technology

Researchers have developed a system that generates electricity from osmosis with unparalleled efficiency using seawater, fresh water, and a new type of membrane just 3 atoms thick.  A 1 m² membrane with 30% of its surface covered by nanopores should be able to produce 1MW of electricity. This is enough to power 50,000 standard energy-saving light bulbs.


  • Investors
  • NGO’s
  • Electricity generation companies
  • Government


  1. The effectiveness of this clean energy method has only been implemented on a small scale. The next phase would be to identify potential investors by attending energy efficient conferences.
  2. Identify a electricity generation company that is transition towards the usage of clean energy. Conduct a 6 month trial period during which time staff go the electricity generation company are trained. Provide workshops to further educate the employees in the company.
  3. Once the effectiveness of osmotic power as a means of clean energy is more apparent to the general public, continue to seek out more investors to increase large-scale implementation.



CampStove: Turn fire into electricity using wood

1. Sustainability Problem: Access to Electricity

2.3 billion people across the world have unreliable or no access to electricity. 550 million mobile phone users live off-grid and often travel long distances and pay high fees for charging.


2. Technology solution: The BioLite HomeStove

The BioLite CampStove generates usable electricity for charging LED lights, mobile phones, and other personal devices. Burning only wood, the CampStove creates a smokeless campfire that can cook meals and boil water in minutes. Setup is easy, fuel is free, and flames are hyperefficient with performance on par with white gas stoves.


The stakeholders

  • Users
  • The company
  • Retailers
  • Local governments / NGOs to foster usage of this product



  • The Biolite CampStove can be bought online, but only in North America and Europe. Key places like Africa are still off the distribution network.
  • According to their website,  the company aims to create distribution networks comprised of local BioLite teams and trusted partners to reach households that traditional retail models don’t.
  • Support from NGOs, retailers and local governments is key to allow distribution of the CampStove in areas with no connectivity and/or electricity.



New Green Roof Technology Provides Electricity

plant energy

Problem: Household Dependence on Non-Renewable Energy

The problem lies in the fact households rely so much on non-renewable energy for their electricity needs. Consequently, non-renewable energy has a number of impacts on both the environment and human health. It is also non-replenishable, which will have economic repercussions.

Technology: “Plant Power: The New Technology Turning Green Roofs into Living Power Plants” by Lucy Ingham

A new technology, created by the company, Plant-e, uses living plants in green roofs, parks and other green spaces, to generate energy. The technology works by converting waste electrons and protons generated by bacteria in the soil into usable electricity. This harnessed electricity can be used to charge phones, power lights and cut down a house’s reliance on external electricity sources.


Plant-e tech engineers/designers

Technological partners


Parks, buildings and green spaces

Consumers of the technology


In order to implement this technology on a large-scale, a number of investors need to be introduced

So far, this technology has only been launched in the Netherlands, more marketing and campaigning should be implemented to push its use in the U.S and other countries

Create educational opportunities for the public to learn about the technology and see how they can implement it in their own communities





Hybrid-Flywheel Energy Storage Plant

1. Technology

The hybrid-flywheel energy storage is the first grid-connected flywheel project in Europe, with its first operation in Ireland. SchwungradEnergie Limited is behind the project.  It is a 100% clean power source and has no direct fuel use or related emissions. It absorbs power, stores it and releases energy according to any grid requirements to rapidly inject energy, making it a flexible approach. Unlike a power plant, it operates as a shock absorber and dynamic energy support system.

2. Sustainability Problem

The U.S. Energy Information Administration estimates on average 6% of the electricity  during  transmission and distribution is lost annually. In 2015, 67% of electricity generated was from fossil fuels. With the depletion of such non-renewable resources, energy efficiency is imperative in at least prolonging their longevity until an alternative approach is found. The hybrid-flywheel is essentially an energy storage system- which releases energy to the grid when required, thereby improving efficient in both distribution and transmission.

3. Stakeholders

-City government and energy department officials

-Private investors of clean energy

-Engineers, energy consultants

4. Implementation

  • Ireland can be thought of as the pilot testing site since it is the first of its kind. Collect data for a period of 6 months to 1 year and publish data, making it visible to foreign investors.
  • To further increase awareness of the product, attend regional and global energy efficiency fairs and events.
  • Develop partnership with government officials (PPP’s) of growing smart cities and provide incentives (free 1 year maintenance/ consulting/ installation) to integrate it into the smart city electricity grid.

5. Reference

First Hybrid-Flywheel Energy Storage Plant Announced For Europe


Green Energy from Human Kinetic Energy


Problem: The Implications of Non-Renewable Energy

Non-renewable energy has become synonymous with dirty energy, harming both human health and the environment’s natural resources. For this reason, new forms of renewable energy are becoming more and more widely accepted and implemented.

Technology: POWERleap Harnesses Energy From Foot Steps!” by Jill Fehrenbacher

Introduced in 2007 at Metropolis Magazine’s Next Generation design competition, POWERleap is a floor tiling system that converts wasted energy from human foot traffic into electricity. POWERleap uses what is called piezoelectric technology, which describes the electric charge that accumulates in certain solid materials (such as crystals, certain ceramics, and biological matter such as bone, DNA and various proteins) in response to applied mechanical stress. This, combined with a highly sophisticated circuitry system, can create electricity. This form of electricity has huge potential, considering there are areas with major foot traffic, like 5th Avenue or even a dance club, both of which could generate large amounts of electricity.



POWERleap engineers/designers

Technological partners


Companies/Buildings that install the technology


In order to implement this technology on a large-scale, a number of investors need to be introduced

Since the technology is still in the beginning stages, it will need to reach out to small-scale partners, for example, schools, gyms, etc. that are looking to implement something like POWERleap in their facilities to promote physical activity and, as an after-thought, electricity.

Create a local (later national) campaign promoting the use of POWERleap in commercial building steps and other large areas.













Planter that Charges Smartphones

Sustainability Problem

The natural resources that are currently used to create the majority of the world’s electricity are scarce and not clean. Renewable energy sources are needed not only because they will not run out but also because they are clean.

Technology Article

Bioo is the world’s first planter that can charge your smartphone  by Cat DiStasio on 4/29/2016. 


  • A startup based in Barcelona has created a planter that harnesses the power of photosynthesis and uses it to charge electronic devices.
  • The planter is able to charge a device up to 2 to 3 times a day and produces electricity during the day and night (5.0v, 1.0A).
  • It looks like a simple, average sized planter pot and has a USB port disguised as a rock.
  • The planter is expensive, it costs $135, but the idea of creating electricity from plants is an interesting one.


  • Arkyne Technologies
  • Consumers of the product
  • Consumers of electricity


  • Make the planters available for commercial use. You can only pre-order now, the products are expected to be ready for use in December 2016.
  • Get the planters in stores so they can be made and sold on a larger scale.
  • Investigate using the technology on a larger scale to create larger amounts of electricity to power items other than USB port device (a Dutch company is currently doing this).

Other sources: