Fisker patents EV battery with a range of 500 miles that can be charged in 1 minute!

Fisker 1

Sustainable Problem: Energy

Technology:

  • Fisker reportedly made a breakthrough in solid-state batteries – and their technology could allow an EV to travel 500 miles after a single charge.
  • The company has filed a patent for a groundbreaking solid-state battery.
  • Green Car Congress reports that the patent includes claims about manufacturing processes and novel materials, saying, “Fisker’s solid-state batteries will feature three-dimensional electrodes with 2.5 times the energy density of lithium-ion batteries.” Recharging such a battery, they pointed out, would take less time than filling up a tank of gas today.

Here’s a representation of the three-dimensional electrodes:

fisker 2

Stakeholders:

  • Fisker
  • Fabio Albano, co-founder of Sakti3 and Fisker’s vice president of battery systems.

Deployment/Implementation:

  • The project is years away from completion.
  • Deploy when figure logistics of implementation are figured out
  • For this particular technology, Fisker says that it will be automotive production grade ready around 2023.
  • In the meantime, Fisker plans to launch its Emotion electric car at CES 2018 in January 2018

Sources:

https://inhabitat.com/fisker-patents-ev-battery-with-a-range-of-500-miles-that-can-be-charged-in-1-minute/fisker-emotion/

https://electrek.co/2017/11/14/fisker-solid-state-battery-breakthrough-electric-cars/

Comments on Compostable Water Bottles by AA4098:

It is very impressive technology considering how slow plastic decomposes. According to the link, “PET plastic takes between 450 – 1000 years to decompose. Most PET bottles end up in a landfill, eventually contaminating lands and groundwater. William Horner, Founder and President of Totally Green Bottles & Caps, believes that the bottled water marketplace is long overdue for a 100% compostable bottle, cap, and label.” This would reduce a lot of waste that could take hundreds of years to decompose. I wonder if there would be any health effects from drinking water out of these bottles all the time.

UNI: AV2698

Advertisements

New 3D Printed Tire From Biodegradable Materials

 

Capture d’écran 2017-11-25 à 12.59.13.png

Area : Waste, Energy

Description:

75% of tires are made of petroleum (needed for the production of the rubber used). At the end of the products’ life most of them end up in landfills .

Michelin, thanks to a new concept, 3D printed a new kind of tire. The tires are made out of molasse (sugar paste), then turned into ethanol which is used to produce rubber replacing petroleum. Since the tire is only made of natural sources (molasse, bamboo,…), the tire is fully biodegradable.  Although, thanks to the new design of the tires, their useful life should be greatly extended. Indeed, instead of changing tires when a problem arises, the new Vision tire can be modified with a 3D printer.

Sources:

https://www.michelin.com/eng/media-room/press-and-news/michelin-news/Innovation/MICHELIN-Visionary-Concept

https://www.fastcompany.com/40449277/this-new-tire-has-no-air-and-is-3d-printed-from-biodegradable-materials

Stakeholders: Car manufacturers / City officials / Car owners

Implementation:

  • Michelin needs to research markets to find countries/ citis which are early adopters of new technologies;
  • They need to contact the government of this country/city to run some test in the city and have approval of their technology being used
  • They need to find car manufacturers that are also early adopters to pilot their technology

Other article comment: The tiles are also gathering data that can be used for better understanding pedestrians habits and crowd flows . This type of information is useful to commerces but also for cities.

https://makeasmartcity.com/2017/11/09/energy-generating-walkway-no-footstep-wasted/

 

 

You Can’t Spell ‘Carbon Nanotube Electricity’ Without ‘Yarn’

The Problem

Category: Energy

Harvesting mechanical energy from a person’s everyday ordinary actions – or nature’s actions – is both expensive and inefficient.  Therefore, significant amounts of energy are wasted.

 The Tech

An international team of researchers have developed a technology called Twistron Harvesters, which is essentially carbon nanotube submerged in ion gel that is weaved into yarn.  A small electric current is generated when the weave is stretched out.  The carbon nanotubes can potentially replace external voltages which were previously used for this type of mechanical energy harvesting.

As seen in the photo below, clothing can have this carbon nanotube tech weaved into the fabric.  Electricity can be simply generated as a person breathes in and out, stretching out the weave.  The tech was also tested in ocean water.  Waves can naturally stretch the harvesters, generating power.

The power generated is still not sufficient for home lighting or EV charging, however scientists are optimistic that improving the tech and dropping carbon nanotube pricing will make this energy generation method a possible power charging option for wearables.

Yarn_Electricity_Shirt

Article Title: Carbon nanotube “yarn” generates electricity when stretched
Website: Ars Technica
Link: https://arstechnica.com/science/2017/08/carbon-nanotube-yarn-generates-electricity-when-stretched/

 The Stakeholders Using The Tech

Clothing Designers

Tech Companies (both wearables and non-wearables)

Consumers

Utilities (for large-scale generation, i.e. waves)

Aquatic authorities

The First Three Steps

  1. From a wearables standpoint, the scientists should seek an ambitious wearable tech partner willing to conduct experiments using the carbon nanotube tech to charge actual wearable tech.
  2. They should then partner with a clothing manufacturer to see if mass-producing textiles with this carbon nanotube tech is feasible.
  3. If so, they should conduct testing on robots and/or humans to see how effectively everyday human mechanical actions generate power.

UNI: gm2778


Comment on Google maps predicts parking difficulty using machine learning

I imagine this application can be extended to other supply/demand service scenarios such as assessing wait times for entering events (i.e. concerts or baseball games) or restaurant seating availability. Certainly, this will lead to less demand for crowded services, and thus an influx of supply! “Nobody goes there anymore – it’s too crowded.”

SMART,CONNECTED ELEVATORS/ESCALATORS CREATE SAFER EXPERIENCE FOR RIDERS

Ch2217 is my uni

 

1)Energy, transportation

 

 

2) https://www.ibm.com/blogs/cloud-computing/2017/03/intelligent-services-elevators-escalators-watson/

 

A smart Internet connected elevator/escalator can alert owners in the event that it needs service before failure, inconvenience or rider injury occurs. It also provides the owner/operator with detailed information on the performance and usage of the equipment.

 

3) The stakeholders are anyone owning or managing a building that utilizes elevators.

 

4) I would market the technology to building management companies and suggest that it might lower insurance rates for the building by reducing the likelihood of rider injury or entrapment.

 

My comment is for the Energy Producing Homes: I wonder if the homes could be manufactured offsite semi-preassembled, further reducing the CO2 footprint of construction.

Cows Wearing Backpacks – A Methane Solution

Livestock farming has an enormous impact on climate change. In Argentina, livestock agriculture is prominent with over 51.2 million cows residing in the country. In the United States, methane emissions from animals contribute to 22% of our greenhouse gas emissions. With that being said, methane is also one of the most impactful GHG’s. It is estimated that one cow produces enough methane in a year to do the same amount of damage as 4 tons of carbon dioxide.

The Paris Agreement called for a GHG reduction to prevent the Earth’s temperature rising an additional 2°C compared to temperatures from before the industrial revolution. In order for this to happen, livestock agriculture will have to make strides to reducing their emissions. Aside from the population becoming vegan, there have not been many solutions put forward to make an impact up until recently.

The National Institute of Agricultural Technology (INTA) has created a backpack to mitigate climate change by capturing methane emissions from cows. The backpack would be worn on the cow and captures methane by inserting a tube into the cow’s rumen, or a digestive organ where the gas is produced. Researchers say this does not harm the cow and would capture up to 300 liters of methane per day. This methane can then be condensed and used as fuel for “light” activities such as cooking or lighting.

Although this seems like a humorous solution, it is encouraging to see INTA taking a stab at the methane problem!

Check out my notes below for a summary of the details.

  1. Sustainability Problem: Energy and Climate Change
  2. The following bullet points summarize Argentina’s invention:
    • Methane produced by cows as a result of digestion accounts for 25% of all methane emissions in the atmosphere
    • On average, one cow produces 300 liters of methane per day 
    • The INTA created a backpack that is inserted through the cow’s skin which captures gases emitted through its mouth or intestinal tract
    • The backpack collects the methane and it is then condensed and used to power activities such as cooking, lighting, or driving a car
  3. Organizational stakeholders that would be involved in this technology are:
    • National Institute of Agricultural Technology of Argentina
    • Food and Agriculture Organization of the United Nations
    • Local farmers in Argentina
    • Facilities Management Team
  4. The following steps should be taken to deploy this technology:
    1. INTA should test this technology on a few local farms in Argentina.
    2. This technology could be introduced on a continental or international stage at the UN, to debate the efficacy and legality of using this on animals.
    3. Lastly, management teams can be established to discuss maintenance and implementation of these on farms.

If you would like to learn more, check out the links!

http://bigthink.com/design-for-good/this-is-how-you-turn-cow-fart-gas-into-energy#

https://www.good.is/articles/backpack-collects-cow-farts

 

 

TIDAL ENERGY

tidal 4

Tidal power or tidal energy is a form of hydro-power that converts the energy obtained from tides into useful forms of power, mainly electricity. Although not yet widely used, tidal energy has potential for future electricity generation. Tides are more predictable than the wind and the sun.

Sustainable Problem: Energy

Technology

Tidal power or tidal energy is a form of hydrophone that converts the energy obtained from tides into useful forms of power, mainly electricity. Although not yet widely used, tidal energy has potential for future electricity generation. Tides are more predictable than the wind and the sun.

  • Potential: Worldwide potential for wave and tidal power is enormous, however, local geography greatly influences the electricity generation potential of each technology. Wave energy resources are best between 30º and 60º latitude in both hemispheres, and the potential tends to be the greatest on western coasts.

tidal2

  • One type uses floats, buoys, or pitching devices to generate electricity using the rise and fall of ocean swells to drive hydraulic pumps.
  • A second type uses oscillating water column (OWC) devices to generate electricity at the shore using the rise and fall of water within a cylindrical shaft. The rising water drives air out of the top of the shaft, powering an air-driven turbine.
  • Third, a tapered channel, or over topping device can be located either on or offshore.

tidal1

Stakeholder:

  • Smart Growth Companies
  • Institutions or Companies that use energy
  • Utility Companies

Deployment/Implementation

  • Develop technology fully and attract investors
  • Make technology most efficient
  • Implement into society at different levels
  • Marketing Campaign

http://www.rnp.org/node/wave-tidal-energy-technology

UNI: AV2698

Comments to Wakati : Keep food fresh using solar power by RS3686 by AV2698 :

Unlike a refrigerator, the Wakati does not control temperature and, therefore, cannot store fruit and veg for long-term periods. Wakati have shown that a one or two-day shelf-life in a hot climate can be increased to 10 days. In developing countries this can be significant because some food will not go to waste and some companies can even profit.

Energy from Evaporating Water could rival Wind and Solar.

Ch2217 is my uni.

 

1: Energy, air, water

 

 

 

 

 

 

2: https://www.newscientist.com/article/2148623-energy-from-evaporating-water-could-rival-wind-and-solar/

 

This machine could harness the energy from water that evaporates from existing dams and lakes in the U.S. It could provide up to 2.8 billion megawatt hours per year or about 2/3 of the electrical production in the U.S in 2015.

 

3: Stakeholders are anyone currently using electricity generated by burning fossil fuels. Additional stakeholders would be less developed nations who would not have to spend billions upgrading their infrastructure to burn fossil fuel burning generating plants.

 

4: If this technology can be refined it would sell itself to countries, states and cities currently using fossil fuels to generate electricity or facing huge infrastructure upgrades to generate electricity using fossil fuels.

 

My comment: For the rapid electrical cell recharging technology article;

I particularly like the safety improvement offered by this technology. The removal of the membrane in the fuels cells which become clogged and cause overheating and fires makes this technology important for the future of transportation fuels cells being utilized on a larger scale