Machine learning for vegan food

  1. Meat and animal products are an important source of protein with a relevant nutritional value. Nonetheless, the environmental impact in terms of land use, water consumption and CO2 emissions have become of significant importance, also due to the continuous increasing consumption. By 2050 world meat production is projected to double, most of which is expected in developing countries. [1]

According to the Food and Agriculture Organization, the livestock sector generates more greenhouse gas emissions [Co2e] than transport, by 18%. [2]

It is also a major source of land and water degradation. Livestock’s requires vast tracts of land and a significant demand for feed crops, both contribute to biodiversity loss. Moreover, it’s among the most damaging sectors water resources, not only because of its water consumption, but also contributing to water pollution, eutrophication and the degeneration of coral reefs, due to the manure of livestock.

  1. Machine learning is a subset of AI, that generates algorithms that can learn from data and make predictions on it.  In other words make machines learn from experience, experience coming in form of data and the more the data, the more it learns. Machine learning can be useful for making data-driven predictions or decisions.

To create healthier food, companies like Hamptons Creek are automating the extraction and analysis of plant proteins. This includes examining their molecular features and functional performance such as gelling, foaming, and emulsifying properties. Ultimately, the goal is to feed this research to an AI an through machine-learning algorithms identify the most-promising proteins for use in the creation of vegan food that tastes similar to animal products (mayonnaise, muffins, spreads, and other foods). Finally, we are applying generative design to food production. [3]

According to Lee Chae, Hampton Creek’s head of research and development,  Hampton Creek applies deep machine learning to plant biological data to meet its objective of creating healthier food. [4]

  1. This is not really a new technology rather than a new technology application. To deploy this application, more enterprises in the food industry should be making research in this field, or applying the outcomes. More importantly, I personally don’t think that every enterprise should be conducting the same research rather than to have an open database with the results,  would be a great way to expand the adoption of this knowledge.  Furthermore, this new application raises the question of what other industries could be impacted by machine learning, through generative design? Let’s take for example the polymer industry, imagine to feed the AI data about the plant properties to replace plastics.

 

  1. Since deep learning and machine learning can be applied to several databases, to make predictions as well as generative design, many industries could benefit from this technology. In my opinion is a private sector driven technology, especially due to its large upfront capital investment.  The first step to deploy it is to have a reliable database, this can be either from a primary or a secondary source, depending on the application.

Although it does require a group of people specialized in artificial intelligence, the results could be applied to the industry with no further disruption, this reduces the barriers to technology adoption.

Advertisements

Solar Water Capturing Device

Problem
Many developing countries in the Middle East and Africa are experiencing water shortage problems. The amounts of water vapor that can be found and potentially captured from the air are equal to about 10% of fresh water found in lakes on Earth. Most of the countries in question rely on importing water and aid from other word organizations. Furthermore, those areas experience low humidity which restricts the use of current technology due to their low efficiency.

Solution
A research team at MIT has come up with a design for a device that can capture water vapor at an average rate of 2.8 liters daily at relative humidity levels as low as 20%. The design is based on “porous metal-organic framework-801” that utilizes adsorption properties of the metal and organic material. The frame absorbs water and then the device uses the heat from the sun to release the water into a storage device. This means that no additional heat or energy is required to operate the device. The design is still in its early stage and further research and development are needed to make sure of its efficiency and reliability.

F1.large

Stakeholders

  • Potential investors
  • Scientists and institution working on the research
  • Manufacturers of metal-organic material
  • People living in areas with water shortages

Next Steps
Since the technology is still in development, MIT and other investors should back the project for further development. The device is still a prototype and requires additional filtration system and an improved collection system for water particulates that form on the surface of the device. Advertise the technology and shift focus to countries in need of new freshwater resources to help fund the manufacturing process of the device and start initial testing.

By: Ahmad Al Zubair (aa4098)

Resources used:

 

Comment on “Hybrid Wind Power Generating & Fish Farming System

Although I like the idea of integrating different technologies and ideas and finding more efficient uses of spaces, there are many debates growing on whether these can be called “sustainable.” There are many issues with fish farms:

  • They disturb other fish habitats in the area
  • Inconsistent water currents and circulation can result in water with high health risks
  • Generally, they acquire a bad image in the eyes of the public vs. wild fishing
  • Risk of fish “escapes”

Maybe the technology can be modified so that the energy generated can somehow try to fix or minimize some of the issues listed above.

 

Turning Climate Pollution Into Fish Feed

 

p-1-this-startup-turns-climate-pollution-into-ingredients-for-fish-feed

Area of focus: Safety and Health

Description:

Overfishing is a global issue that causes environmental and social problems. From an environment standpoint, it not only affects fish stocks around the world which are declining at an alarming rate but also represent an important source of water pollution due to massive fishing boats deployed in various locations. Those big scale exploitations then affect small scale fishermen by decreasing the amounts of fish reaching the coasts. Also, a lot of fish caught by the bigger boats are exported, leaving local population with a reduced quantity of food available.

One of the drivers of overfishing is the need for small fish used as feed (usually for bigger fish productions and livestock).  As the Fast Company’s article mentions : “NovoNutrients wants to replace that fish food with something more sustainable: microbes grown with carbon dioxide”.

The company uses carbon dioxide to feed microbes that become protein used for animal feed production. A pipe is connected to water where the gases are dissolved.

During the process, Hydrogen is also being produced thru (solar-powered) hydrolyse which helps power the installation.

Sources:

https://www.novonutrients.com/

https://www.fastcompany.com/40480856/this-startup-turns-climate-pollution-into-fish-feed

http://www.allaboutfeed.net/New-Proteins/Articles/2017/8/More-fish-meal-but-growing-interest-in-alternatives-165917E/?cmpid=NLC%7Callaboutfeed%7C2017-08-02%7CMore_fish_meal,_but_growing_interest_in_alternatives#comments

 

Stakeholders :

  • Animal feed manufacturing companies
  • Livestock and aquaculture farms
  • Government officials

Implementation:

  • Research countries with the highest concentration of aquaculture farms
  • Approach farmers to show them the product
  • Work with government officials to integrate the use of the product in best management practice guides for farmers

Other technology:  Fighting fire with math and maps (https://blog.nature.org/science/2016/08/03/technology-to-the-rescue-for-foresters-in-the-thick-of-it/)

This technology is interesting as it could help cities with diseases spreading among trees. By mapping the type of trees available around the city, officials would be able to better diversify the kind of new trees planted making “greening” efforts more efficient.

 

RIPE: Genetic Engineering and Future Food Shortages

The United Nations estimates the world population will increase to 9.6 billion people by 2050. A population rise is be accompanied with growing concerns about resource usage such as water, food, energy, and housing. The RIPE Project is sponsored by the Bill and Melinda Gates Foundation.

1.  Sustainability Problem: Health & Water

2. The following bullet points summarizes sustainability technology that addresses health and water:

  • A project called Realizing Increased Photosynthetic Efficiency (RIPE) is a team of researchers at the University of Illinois at Urbana-Champaign
  • The team is using genetic engineering technology to maximize the photosynthetic capabilities of tobacco
  • Their goal is to increase crop yields and efficiency by targeting inefficiencies in the plant metabolism
  • RIPE is engineering three genes that express how light is processed
  • Thus far, they have increased tobacco yields in a greenhouse by 20%

3. Organizational Stakeholders: Once the RIPE team assembles a procedure that can be reproduced in mass with different plant species, a number of stakeholders will be necessary to implement this technology.

  • Educational stakeholders must recruited trained scientists in genetic engineering.
  • The United Nations Food and Agriculture Organization can use their involvement to bring policy to the mainstream regarding genetically engineered foods internationally.
  • Public Private Partnerships can be used to make technology more affordable.

4. The first step in deploying this technology can be deployed by bringing this to the UNFAO to encourage international acceptance of this technology as a solution to the food crisis as population rises. Following this, the Bill and Melinda Gates Foundation can create a protocol and continue their research with other essential food crops. A team of educational stakeholders should be assembled to encourage genetic engineering at universities.

Check out the link to the article below to check out more images and information.

https://www.technologyreview.com/s/608535/to-feed-the-world-improve-photosynthesis/

Designer Davorin Mesari turns city residents into farmers

Sustainability Technology: Designer Davorin Mesari has created an indoor garden made up of 16 individual growing pods, allowing city dwellers with minimal space to grow fruits and vegetable. The growing units are stackable, so output can be doubled without compromising precious urban space.

Sustainability Problem: Access to Healthy Foods

According to Harvard’s School of Public Health’s website, “A diet rich in vegetables and fruits can lower blood pressure, reduce risk of heart disease and stroke, prevent some types of cancer, lower risk of eye and digestive problems, and have a positive effect upon blood sugar which can help keep appetite in check.”  They confirm that while all fruits and vegetables contribute to health benefits, “green leafy vegetables such as lettuce, spinach, Swiss chard, and mustard greens” are some of the most important health contributors.  Despite these findings, many urban dwellers find themselves too busy to cook a healthy meal and rely instead on take out, delivery, or processed foods which are often unhealthy.  More often than not, these items are packaged in such a way that contribute to negative environmental impacts. Davorin Mesari’s innovative product, aptly named ‘Indoor Garden’  allows city residents to grow produce healthy food in the comfort of their apartments. This inventive technology creates an indoor modern garden that is powered by fluorescent lighting which mimics the natural solar spectrum allowing urban denizens to grow their own healthy vegetables and greens at home without creating unnecessary waste, and thus making the production of a healthy meal not only easy but more accessible.

Davorin Mesari’s state-of-the-art technology could be implemented in a central setting, such as a school or community center, as an urban agricultural project offering locally grown produce into a food desert, or area where there is limited access to healthy, fresh food. One issue with urban farming is finding the land on which to farm and ensuring that the soil is not contaminated.  With ‘Indoor Garden,’ you don’t need to find land on which to farm or worry about soil as the units come with growing pods and are stackable to maximize indoor space. Moreover, these units can serve as educational devices, and, once installed, can showcase the cultivation, harvesting, and the preparation of healthy meals.

Technology Stakeholders:

  • Urban Residents
  • Schools
  • Community Centers
  • Urban Farmers
  • Farm to Table Enthusiasts

Process of Implementation: 

Step 1: Introduce this new technology through an educational workshop to a community group or school and describe the feasibility of implementation.

Step 2: Based on local interest and available funding, establish a site for implementation.

Step 3: Work with local businesses to attract further financing (if necessary) by creating excitement around the new technology.

Step 4: Once funds are raised and site is established, buy 5 units for testing and establish a protocol to ensure maintenance of product.

Step 5: Collect feedback from community group/school and establish ways to enhance the next phase or implementation at a second site.

Source: 

Yanko Design’s ‘Cultivation in the City by Troy Turner

The Nutrition Source (Vegetables and Fruits)

Starting A City Farm

Reconnecting with our Food Chain Through Smart Supermarkets

Sustainability Problem: Lack of Food Transparency

Few people today know where and how their food is produced, its journey, and what the overall life cycle is of the product.  This disconnect can cause people to make uninformed decisions at the supermarket, leading to poor health and an unsustainable lifestyle.

Sustainability Technology: Supermarket of the Future

To combat this opaqueness, Coop Italia (Italy’s largest supermarket chain), worked with Accenture and Avanade to develop a futuristic supermarket that enhances the food purchasing process through a more welcoming, innovative, and informative shopping experience.

Their flagship store in Milan uses interactive food displays and smart shelves to provide a more customized and immersive shopping process.  Coop Italia’s interactive tables display information pertaining to a product’s nutritional facts, origin, allergen/pesticide levels, disposal instructions, its journey and overall carbon footprint using augmented reality and sensors.  All shoppers have to do is hold up the item of interest to a reflective/smart screen.  Vertical shelving allows for easy product navigation and discovery, while enhanced labels provide a deeper insight into each product.  Real-Time Data Visualization screens add an extra layer to the supermarket and shopper relationship by displaying company values, daily sales/promotions, top selling products by category, and cooking suggestions.

Unlike traditional supermarkets, the products are organized and situated together by similar ingredients (i.e. canned tomatoes can be found next to fresh tomatoes); and shelves are shorter, providing the store with a more community-like feel, similar to the much-loved open-air/farmer’s markets of today.  These design aspects move away from the overwhelming and disconnecting feel of traditional supermarkets and instead provide a warm and enjoyable atmosphere.

There are many upsides to such a novel supermarket.  In providing a holistic view of products, end-users can factor both the social and environmental costs to the traditional price and quality qualifiers.  Understanding the true cost of a product allows for a more informed purchasing decision.  Additionally, consumer’s buying choices can directly impact the way food is farmed, processed, and delivered; forcing all companies within a supermarket’s value chain to engage in more sustainable practices to stay relevant and provide increasing value.  Finally, this dynamic two-way communication helps turn a once tedious chore (grocery shopping) into a more fulfilling and fun experience!

SOURCES:
“Supermarket of the Future Opens its Doors, Coop Italia and Accenture Reinvent the Grocery Shopping Experience”  Accenture, 12/6/2016,
https://newsroom.accenture.com/news/supermarket-of-the-future-opens-its-doors-coop-italia-and-accenture-reinvent-the-grocery-shopping-experience.htm
 
“An MIT professor designed this supermarket of the future — take a look inside”  Business Insider, 1/11/2017, Leanna Garfield
http://www.businessinsider.com/inside-supermarket-future-carlo-ratti-photos-2017-1/#the-food-there-is-not-organized-like-a-typical-grocery-store-2

Stakeholders:

  • Consumers looking to eat healthy and reduce their impact on the planet
  • Supermarkets wanting to enhance customer engagement and their ESG practices
  • Farmers because they will have to disclose their farming and transporting practices
  • Food companies because they will be required to disclose the processing, packaging, and transportation data of their products
  • Shareholders of the supermarket since they will have to assess the ROI for making the transition to becoming “smarter”

Technology Implementation & Distribution:

Bring awareness (marketing campaigns, social media) about the smart supermarket by communicating its potential to both traditional supermarkets and end-users.

Showcase proto-types in different countries (done in Milan’s 2015 World Expo) which can help to increase the buzz and interest about this innovation.

Begin and continue to bring farmer’s and companies on board so product information can be provided in a more seamless/real-time fashion.

Select cities/areas for testing to work through any technology/operational hurdles, (current test city is Milan).

Use feedback from initial customer reactions to enhance and/or customize the user experience.

By: Bhoomi Shah  , Columbia UNI: brs2147

In response to Gillian Mollod’s Designer Davorin Mesari turns city residents into farmers blogpost:

bhoomishah4683

I love this idea! Using this technology people can pick only as much as they need for their meal, resulting in less food waste (which is usually compromised mainly of fruits and vegetables) and less need for refrigeration storage. And considering that more people are now living in an urban environment, this is a great way to help people connect/reconnect with the joy and benefits of gardening. Finally, since each container consists of 16 pods, it provides customization capabilities that allow individuals to grow a nice selection of their own preferred fruits/veggies.

 

 

Solving the Environmental Impact of Meat

Clean Meat

03_About-Us_Science1

1) Sustainability Problem: Animal agriculture accounts for 30% of all land use on the planet and one-third of the world’s fresh water, contributing to approximately 24% of global greenhouse gas emissions.

2) In order to address this problem there are two new trends using technology to address this problem, meatless alternatives and Clean Meat. This article highlights 7 meat-free startups that are creating plant-based meat that mimic the taste, texture, and experience of meat, and dairy products, without the ecological footprint associated with traditional animal agriculture.

  • The Beyond Burger contains more more iron and protein than a beef burger with less saturated fat and none of the cholesterol, hormones or antibiotics.  Beyond Meat already has products in Whole Foods and Safeway stores around the country.
  • The Impossible Burger is unique because of a protein called heme, which gives the patty the color and flavor of meat, enabling the burger to “bleed” like meat.  The burger is made from wheat and potato proteins and copies the mouthfeel of beef fat with coconut oil.
  • Clean Meat, or cultured meat, is created by taking a small sample of the desired animal cells and replicating them in a culture outside of the animal. This creates a clean meat, meat without the antibiotics and waste contamination. Clean Meat allows consumers to still eat meat without the environmental degradation typically associated with animal agriculture. It is a safer, cleaner, more environmentally friendly way to enjoy meat.

3) Stakeholders:

  • Animal agriculture farms
  • Produce farms that support animal agriculture by supplying feedstock
  • FDA/regulators
  • Restaurants, grocery stores, meat buyers
  • NGOs
  • Consumers

4) Implementation/Deployment 

  • Raise public awareness and acceptance of these alternative meats to increase adoption of the products into everyday consumption. This can be done through advertisements of the products and its many benefits (environmental, human and animal health), but widespread adoption will only be possible if consumers try and like the products so scaling up product options and availability is key.
  • Companies such as Impossible Foods and Beyond Meat are already selling their products so the next step will be scaling up, and in the case of Clean Meat, reducing prices. Prices have already been dropping for Memphis Meats, one of the companies selling clean meat. Ir order to scale up these alternative meat companies will need to engage stakeholders (meat buyers – restaurants, grocery stores, etc.) in order to get their products into stores and restaurants.
  • Obtain FDA approval for necessary products so that the public has faith in the safety of what they are eating. The Impossible Burger is currently attempting this process.

Resources:

http://science.time.com/2013/12/16/the-triple-whopper-environmental-impact-of-global-meat-production/

https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data

http://cleanmeat.com

http://www.gfi.org/what

https://www.impossiblefoods.com/burger/

https://www.greenbiz.com/article/7-meat-free-startups-changing-future-food

UNI: etg2132