Breath Brick (2015 R&D Award Innovative Architecture)

Break Brick

  • Sustainability Problem:

Effects of air pollution cause 3.3 million premature deaths each year[1] and majority of household pollutants are due to domestic fire for cooking and/or heating homes. The aforementioned are acquit in developing densely populated cities – Beijing, Manila, Nairobi, Cairo, etc.  Access to air filtration systems are limited to a variety of  issues, but the most common are socio-economic and infrastcture.

Category: Clean Air, Energy Efficiency, Energy Savings, Infrastructure, Innovative, Sustainability


  • Breathe brick is a porous concrete module that forms an air-filtration façade. Pulls in air and separates heavy particles and drops them to collection bin at bottom of the façade. Filter can separate 30% of fine particles and 100% of coarse particles.
  • Simple inexpensive framework, brick and coupler. Coupler are manufactured from recycled materials and can take on most structural forms.  
  • Breathe brick system can operate as active (integrated into existing HVAC system) or passive as independent system.
  • Breath brick is electric free.

Screen Shot 2017-09-28 at 2.17.04 PM Breathebrick03


Organizational Stakeholder:

  • California Polytechnic State University – School of Architecture
  • Homeowner (especially no access to electricity, densely populated cities developing countries, and governments interest in reducing air population)


Next steps for deployment:

  • Waiting for patent approval
  • Refining design to expand to alternative modular forms
  • Regulatory approval in several development nations as sustainable and clean technology product
  • Funding for production




Smart Tailoring

smart tailoring

Problem: Textile Waste

Textile waste is a major issue in the fashion industry, leading to increased waste material and cluttered landfills, not to mention wasted time, energy and money.

Technology: “10 awesome innovations changing the future of fashion” by Melissa Breyer

A new technology produced by Indian designer, Siddhartha Upadhyaya, called the Direct Panel on Loom (DPOL), also referred to as Smart Tailoring, is way to increase fabric efficiency by up to 15%. It can also reduce lead time by 50%. “By using a computer attached to a loom, data such as color, pattern and size related to the garment is entered, and the loom cranks out the exact pieces — which then just need to be constructed.” With this technology, weaving, fabric cutting, and patterning happen all at once. This process ends up minimizing fabric waste and saves energy and water by 70-80%.


Smart Tailoring tech engineers/designers

Technological partners


Fashion designers

Clothing retailers



In order to implement this technology on a large-scale, a number of investors need to be introduced

Smart Tailoring should start a campaign marketing the technology to both low-end and high-end textile suppliers, proving that the process could be cheaper in general, save the company money, time and energy

Fashion designers must begin to use the technology to introduce the innovation to the public and encourage its usage down the supply chain i.e. factories and low-end designers/retailers.