Smart Cities – Ho-hum; Let’s Step it Up with Art and Culture Based Climate Action

Even if global greenhouse gas emissions were cut to required levels to keep temperature rise below 2°C this century, the cost between 2010 and 2050 of adapting to an approximately 2°C warmer world by 2050 is in the range of $75 billion to $100 billion a year, according to a recent World Bank report.  Making cities smarter so these financial goals can achieved is essential but ensuring redevelopment and adaptation plans are sustainable requires incorporating various types of intelligence.  In the face of significant pending funding gaps we need visionaries and artists to come forth and bring onto the stage all they can to paint the town green!

New and additional financing options will be required for adaptation measures to succeed and the cities that learn how to engage their citizens will achieve these goals more efficiently and economically.  Those that don’t, well, chances are high they will continue with the same ho-hum approaches used to date to make smart cities.

“For all the talk about smart cities a lot of dumb stuff happens in cities,” says Klaus Philipsen.  “Chicago can’t get a grip on police violence, Flint poisons its citizens with municipal water, Washington DC’s Metro subway is befallen by a series of mishaps and Baltimore can’t count its primary votes so that the State has to de-certify the election results…”

Thinking is good, feeling is essential, but action engages citizens and raises awareness while also creating new climate raising tools.  Smart cities are seeing green artists come alive and push the parameters of what it means to be artistic.  A rising tide of these artists are acting in support of the public good and municipalities that learn to leverage art and culture as a technology for change will find themselves designing and building burgeoning epicenters to only further artistic and cultural energy.  Action like this will not only raising intelligence but also capital as it enables citizens to participate in the process of setting goals, establishing policies, and empowering municipalities to meet their climate change adaption ambitions.

Urban dwellers for the most part don’t currently see what it means to be a smart city.  Providing interactive based responses through data collection means but then also exhibiting it in an artful way will activate intelligence and raise municipal goals beyond touting what the best or the healthiest city is.  In fact, municipalities that pause, reset, and stop looking to make the Human Development Index (HDI) list will take their focus where it needs to be: achieving the Sustainable Development Goals (SDGs).  There are 17 SDGs and all the 193 countries represented at the United Nations have agreed to try and achieve them.  Thankfully we are no seeing innovative cities are following this momentum and in particular one goal – Goal 11 –  specifically aims to build cities that are “inclusive, safe, resilient and sustainable.”  This level of sustainability comes when art, community, and the spirit of climate action is kept alive in a city plan but not in the traditional sense, a whole new level of engagement through the promotion of art and culture is required to achieve climate action.

  • SAMPLES OF ART, CULTURAL & INITIATIVE “TECHNOLOGIES”
    • The Gates – 7,503 “gates” along 23 miles of paths in Central Park, NYC.
    • Stone River – 128 ton sculpture at Stanford University made from salvaged  buildings toppled in the 1906 & 1989 San Francisco earthquakes
    • The Mining Project – aerial photography of impacted sites in the United States transformed by water reclamation, logging, military tests, and mining
    • Center for Sustainable Practice in the Arts – the intersection of environmental balance, social equity, economic stability, and cultural infrastructure
    • Project Save Our Surf – collaborations with non-profit organizations to educate and raise awareness about ocean pollution
    • World of Threads Festival – art installations questioning the notions of sustainability and vulnerability
    • Agricultural Compositions –  turning fields of human waste and pollution into colorful landscapes
    • Alliance of Artists Communities – exploring organizational sustainability and applying it to artist residencies
    • Pathway to Paris – a collection of artists, activists, academics, musicians, politicians, innovators bound together in fighting for climate justice
  • ABBREVIATED IMPLEMENTATION STEPS
    • Establish alignment of municipal protocols with the SDGs
    • Create multiple intelligent based city policies – holistic based endeavors
    • Establish artistic residency programs and event-based climate education goals
    • Engage citizens in educational and experiential arts and cultural practices
    • Engage private and public sector companies for sponsorships
    • Build neighborhood based spin-off programs to localize experience
    • Demonstrate to the world what has worked and not
    • Start again, improve, and keep targets on 2050 SDGs
  • KEY STAKEHOLDERS
    • City Planners & Urban Designers
    • Public & Private Foundation Donors
    • EcoArt and Environmental Artists
    • Citizens
Advertisements

Smart Urban Growth Tackles Mobility and Electricity Distribution Concurrently

Cities can get smart taking control of their electrical grid and electric vehicle (EV) charging infrastructure as a means of addressing urban growth.  Boulder, Colorado is making a run at it but few outside Germany have taken a serious move in this direction for it requires a long-term vision.  Seeking this urban planning route is not always initiated for economical reasons.  Boulder, for instance, is driven to engage as a means of increasing renewable energy sources in their electricity generation fuel mix.  Here’s the catch, this approach may not a scalable or sustainable solution for all cities  Mega cities; no way anytime soon.  Rural environments; not likely ever needed.  So, Boulder just happens to sit in the Goldilocks Zone but even with it being “just right” the increasing digitalization of the electric grid and new sources of distributed energy will make this endeavor a tenuous pursuit.

Years ago I was involved in dozens of negotiations with municipalities throughout the United States, Canada, and Mexico.  Many desired to “take control” of and then offer, as a public service, wireless Internet services for their citizens.  The complexities in equipment management and selection, maintenance, and budgeting were often solely regarded in the context of whether to make the WiFi a free or a for a fee amenity to subscribers.  Thing is, that’s not where the root challenge existed.  Even a little bit of education in these matters achieved a stakeholder stalemate for trying to figure out how to convert a privatized service into a public good without causing bias to an ongoing free market was no simple matter.  The concept of a public-private partnership was alien.

Dealing with increasing urbanization today requires a systemic stakeholder analysis and just the right sitting of pilot efforts in advance of any at-scale execution plans.  To date few cities have taken this approach but Toronto, Canada is on the way.

“...We are designing a district in Toronto’s Eastern Waterfront to tackle the challenges of urban growth…Sidewalk Toronto will combine forward-thinking urban design and new digital technology to create people-centered neighborhoods that achieve precedent-setting levels of sustainability, affordability, mobility, and economic opportunities” – Sidewalk Labs

To do as Sidewalk Labs proposes there must be an integration of technologies, policies, and financial mechanisms that allow for private and public implementation plans to surface, ones in service of many stakeholders.

  • SAMPLE TECHNOLOGIES AT PLAY
  • IMPLEMENTATION APPROACHES
    • Analyze long-tailpipe electricity generation fuel mixes
    • Promote EVs and pilots ONLY in cities that have clean fuel sources
    • Establish population growth and transport demand metrics
    • Conduct customer interviews to fit future needs
    • Create intelligent city policies to cater to DER and EV microgrids
    • Engage private-sector electric mobility companies
    • Educate citizens on mobility and clean energy options
    • Build neighborhood based pilots
    • Engage citizens via engagement workshops for updates
    • Prepared to pivot for at-scale execution
  • STAKEHOLDERS TO ENGAGE
    • City Planners & Urban Designers
    • Public Entities and Administrators
    • Private Technology Providers
    • EV Manufacturers & Infrastructure Providers
    • Load Balancing Software Solution Providers
    • Private and/or Public Electric Utilities
    • Citizens

 

JMB2408 COMMENT TO ANOTHER BLOG POST (Leaf Plates):

This is an excellent solution to consumption and in turn waste. If this was a compostable solution that can be put to use in the local houseplant or compost pile then we’re talking about a dream conversion in consumption to waste. The other thing that would be amazing is to see this scale to shipping boxes or other high consumption transport items. Awesome find, thanks for sharing.

Smart Cities & Off-Grid Energy Storage Systems

“Reliable Power Day and Night,” that’s what a Tesla Energy residential energy battery storage solution promises.  For better and worse, the Tesla Powerwall is no longer just for the few seeking off-grid energy storage systems and want to mitigate against utility outages.  In fact, smart energy offerings such as this are well beyond the top branded Tesla EnergySunrun launched their BrightBox solar-plus-storage product offering, Orison audaciously funded a home storage product through a Kickstarter campaign, and even the old school engineering firms such as Lockheed Martin have taken a foray into the energy management and storage market.

From a citywide sustainability perspective these solutions support the growing public desires to reduce dependency on fossil fuel burning energy sources so we should be pleased these technologies have emerged.  Thing is, their capacities to deliver beyond green washing are vast and actually executing this at scale requires sophisticated regulatory and infrastructure coordination, not to mention a whole other set of technologies for load balancing.  Scaling such offering at a citywide level, well, that’s even more complicated.  Yes, this is what a smart cities should be doing to ride the wave of consumer demand that has gone beyond the need to build a bug out shelter for the next Zombie Apocalypse but integrating solar or renewable energy systems such as wind with battery storage is unfortunately a wicked problem.  In executing these CO2 reducing and intelligent energy management solutions there are significant secondary outcomes.  At the top of the list is the challenge of dealing with the historically denoted “consumer,”  that in the process become a producer.  Hands together now, let’s welcome the prosumer to the stage; the true problem child for energy utilities!

How does an electric utility (one only ever known to sell energy) deal with this new bread called a prosumer?  If all producers install off-grid energy storage systems, what is the new role and responsibility for an electric utility?  In this position, can they garner sufficient income to pay for the maintenance of wires and poles?

To solve these challenges there must be significant regulatory involvement in advance of the transition.  Equipment manufacturers and system integrators also need to find ways to make commercially viable solutions that capitalize on consumer demand, but do so in a way so as to not send out a cry and in turn initiate a utility death spiral; ultimately leaving those without an ability to participate in this new energy marketplace footing the bill for the the entire delivery system.  Lastly, through smaller scale pilot projects all the stakeholders can work out best in class methodologies that will take us from where we are to where we clearly are going.

Thankfully, innovative energy marketplaces and regulators are seeing themselves as critical catalysts and the stakeholders in this new world of distributed energy resources (DERs) are stepping up on a global scale.  Pilot projects have begun and successes through public-private partnerships are happening.  The 2016 Southern California Edison and Tesla unveiling of the world’s largest energy storage facility and the New York City program called NY REV have led the way.  Each is but a portion of larger deployment plans for grid-connected storage batteries and both seek to reduce fossil-fuel reliance.  Comprehensive energy strategies initiated in this way will be a win-win for the utilities that want to defray the costs of replacing peakers plants reaching retirement age and for the prosumer wanting to help reduce CO2 emitting fuel in the energy mix.

 

thoughts on “Internet of Trees – When You Give a Tree an Email Address”

  1. Wow, this is really creative! It makes the trees “come alive” and is pretty amazing for potential in many ways to come. I can only begin to imagine how many other things could be categorized and brought into the electronic fold this way. I’m not sure the value of the email as a form of representation and would like to see that stepped up a bit but it’s a start. Surely the more things in cities get tagged the future will show geocaching is not just for those that are high tech in nature.

Smart Cities: Microdosing as a Future Sustainable Technology

CASE EXAMPLE LOCATION: Silicon Valley, California

California and in particular Silicon Valley has long been at the forefront of innovation.  Recent use of a new “technology” is gaining momentum and it may hold the keys to better understand how we can make cities smarter.  Surely GDP isn’t a sole measure of success but Silicon Valley and California have been studied and well documented to be far in excess of what some countries generate.   The fact that Silicon Valley corporations have drawn top talent from around the world and in turn they built a subculture operating on success principals directly tied to a willingness to experiment is unique.  This approach has generated innovations that have many times over changed our planet so surely within are insights on how to make a smart city.

TECHNOLOGY SOLUTION: Microdosing

Increasingly professionals in Silicon Valley are taking small doses of psychedelic drugs in an attempt to increase performance.  The mass media (Huffington PostBBC, and Rolling Stone) is well aware of it and drivers to increase creativity, multi-tasking, and focus are are behind this movement.  This practice, known as “microdosing,” fits all to well with the already pervasive agile software development subculture, venture capital market outputs, and the solution is far from high-tech.  The method is quite straight-forward; minute quantities of drugs such as LSD, psilocybin (i.e. magic mushrooms), or mescaline (sourced from a Peyote cactus) are taken regularly, just like most take a morning vitamin.

SUSTAINABILITY CHALLENGE: Sustainable Development Goals (SDGs) & 2030

People are in denial, time lacks to use education based methodologies as a means to build capacity, and raising awareness is a tedious and long-term challenge.  The World Bank has tried for decades to meet these challenges with hit and miss success.  Insufficient economic support exists to solve at scale infrastructure transformation and even if the means of building capacity  were free through means such as online education it would still lack the human experience based elements required to change human behavior. 

In the period of time we’ve left to work up solutions that can respond to climate change or meet the SDGs we need much more corporate, citywide, regional, state, and federal engagement.  The effort to sync policy for just the 2030 targets is daunting and already many think tanks engaged have concluded we are likely to fail.  There is an increasing number of institutions and experts starting to conduct gap analysis reports and thus we’ve turned the corner, all  evidence transcends wondering if climate change exists.  Science now seeks to determine what the worst and best case scenarios will could like in the years to come.  Earth needs a “quick fix” and societies respond well the belief that simple solutions exist so working toward motivating people to change, finding techniques to catalyze increased awareness, and make people “smarter” to the challenges is critical.  The development of sustainable solutions lies in the challenge of how to best learn from those with a history of sustainable thinking, a methodology to economic success, and who demonstrate the ability to make change at scale.  Manufacturing that recipes they use and distributing them on a global basis just might be the magic bullet, otherwise the world we are about to leave to those who shall live in 2050, especially when accounting for population growth, is frightening to ponder.

IMPLEMENTATION PROCESS: Pilot Science Based Clinical Studies

Clinical research with psychedelics was stopped in the 1960s and many of the substances were scheduled by the U.S. Federal Drug Administration (FDA) as Schedule 1.  This means at present there are no legal routes forward with this microdosing technology but some experiments are surfacing.   In fact, now that we’re past the rush of popular cultures interest in the 1960s psychedelic scene many of these substances have been significantly altered in their use and societal acceptance.  Recent interests are now supported by rigorous scientific research and pharmaceutical scale financial support.  The Multidisciplinary Association for Psychedelic Studies (MAPS) is a premier solution provider for any implementation plans and can aide in the development of pilot study experiments with this microdosing technology.  Further research can develop understanding how microdosing may impact people’s choices to engage in environmental issues and ultimately reveal what’s behind the making of one of the smartest regions in the world, Silicon Valley.  Take note, no research exists today on microdosing, it’s a newly developing technology.

STAKEHOLDERS: Famous Technologists as Leaders to Market Adoption

Silicon Valley has a history of psychedelic drug use and famous people have attested to the use having direct impact on their ability to become more creative and contribute.  Some of the founding pillars in our technology world today are people such as Steve Jobs and Bill Gates, famously attributed to their own personal experiments with LSD.  Engaging high-profile supporters in partnership with clinical organizations such as the Multidisciplinary Association for Psychedelic Studies (MAPS) would be sufficient start to establish case studies that will comply with the standards created by the FDA

From there, based on success in treatment and use studies, the means to further promote and engage stakeholders in the use of this technology as well as how to best apply it to make cities smarter is nearly brainless in effort.  There are hordes of people willing to experiment with these substances at much higher dosages and use them for recreational purposes, garnering interest in microdosing and recruiting subject cities, regions, states, countries, etc. is a matter of presenting science results and signing up participants.