Smart Cities – Ho-hum; Let’s Step it Up with Art and Culture Based Climate Action

Even if global greenhouse gas emissions were cut to required levels to keep temperature rise below 2°C this century, the cost between 2010 and 2050 of adapting to an approximately 2°C warmer world by 2050 is in the range of $75 billion to $100 billion a year, according to a recent World Bank report.  Making cities smarter so these financial goals can achieved is essential but ensuring redevelopment and adaptation plans are sustainable requires incorporating various types of intelligence.  In the face of significant pending funding gaps we need visionaries and artists to come forth and bring onto the stage all they can to paint the town green!

New and additional financing options will be required for adaptation measures to succeed and the cities that learn how to engage their citizens will achieve these goals more efficiently and economically.  Those that don’t, well, chances are high they will continue with the same ho-hum approaches used to date to make smart cities.

“For all the talk about smart cities a lot of dumb stuff happens in cities,” says Klaus Philipsen.  “Chicago can’t get a grip on police violence, Flint poisons its citizens with municipal water, Washington DC’s Metro subway is befallen by a series of mishaps and Baltimore can’t count its primary votes so that the State has to de-certify the election results…”

Thinking is good, feeling is essential, but action engages citizens and raises awareness while also creating new climate raising tools.  Smart cities are seeing green artists come alive and push the parameters of what it means to be artistic.  A rising tide of these artists are acting in support of the public good and municipalities that learn to leverage art and culture as a technology for change will find themselves designing and building burgeoning epicenters to only further artistic and cultural energy.  Action like this will not only raising intelligence but also capital as it enables citizens to participate in the process of setting goals, establishing policies, and empowering municipalities to meet their climate change adaption ambitions.

Urban dwellers for the most part don’t currently see what it means to be a smart city.  Providing interactive based responses through data collection means but then also exhibiting it in an artful way will activate intelligence and raise municipal goals beyond touting what the best or the healthiest city is.  In fact, municipalities that pause, reset, and stop looking to make the Human Development Index (HDI) list will take their focus where it needs to be: achieving the Sustainable Development Goals (SDGs).  There are 17 SDGs and all the 193 countries represented at the United Nations have agreed to try and achieve them.  Thankfully we are no seeing innovative cities are following this momentum and in particular one goal – Goal 11 –  specifically aims to build cities that are “inclusive, safe, resilient and sustainable.”  This level of sustainability comes when art, community, and the spirit of climate action is kept alive in a city plan but not in the traditional sense, a whole new level of engagement through the promotion of art and culture is required to achieve climate action.

  • SAMPLES OF ART, CULTURAL & INITIATIVE “TECHNOLOGIES”
    • The Gates – 7,503 “gates” along 23 miles of paths in Central Park, NYC.
    • Stone River – 128 ton sculpture at Stanford University made from salvaged  buildings toppled in the 1906 & 1989 San Francisco earthquakes
    • The Mining Project – aerial photography of impacted sites in the United States transformed by water reclamation, logging, military tests, and mining
    • Center for Sustainable Practice in the Arts – the intersection of environmental balance, social equity, economic stability, and cultural infrastructure
    • Project Save Our Surf – collaborations with non-profit organizations to educate and raise awareness about ocean pollution
    • World of Threads Festival – art installations questioning the notions of sustainability and vulnerability
    • Agricultural Compositions –  turning fields of human waste and pollution into colorful landscapes
    • Alliance of Artists Communities – exploring organizational sustainability and applying it to artist residencies
    • Pathway to Paris – a collection of artists, activists, academics, musicians, politicians, innovators bound together in fighting for climate justice
  • ABBREVIATED IMPLEMENTATION STEPS
    • Establish alignment of municipal protocols with the SDGs
    • Create multiple intelligent based city policies – holistic based endeavors
    • Establish artistic residency programs and event-based climate education goals
    • Engage citizens in educational and experiential arts and cultural practices
    • Engage private and public sector companies for sponsorships
    • Build neighborhood based spin-off programs to localize experience
    • Demonstrate to the world what has worked and not
    • Start again, improve, and keep targets on 2050 SDGs
  • KEY STAKEHOLDERS
    • City Planners & Urban Designers
    • Public & Private Foundation Donors
    • EcoArt and Environmental Artists
    • Citizens
Advertisements

Smart Urban Growth Tackles Mobility and Electricity Distribution Concurrently

Cities can get smart taking control of their electrical grid and electric vehicle (EV) charging infrastructure as a means of addressing urban growth.  Boulder, Colorado is making a run at it but few outside Germany have taken a serious move in this direction for it requires a long-term vision.  Seeking this urban planning route is not always initiated for economical reasons.  Boulder, for instance, is driven to engage as a means of increasing renewable energy sources in their electricity generation fuel mix.  Here’s the catch, this approach may not a scalable or sustainable solution for all cities  Mega cities; no way anytime soon.  Rural environments; not likely ever needed.  So, Boulder just happens to sit in the Goldilocks Zone but even with it being “just right” the increasing digitalization of the electric grid and new sources of distributed energy will make this endeavor a tenuous pursuit.

Years ago I was involved in dozens of negotiations with municipalities throughout the United States, Canada, and Mexico.  Many desired to “take control” of and then offer, as a public service, wireless Internet services for their citizens.  The complexities in equipment management and selection, maintenance, and budgeting were often solely regarded in the context of whether to make the WiFi a free or a for a fee amenity to subscribers.  Thing is, that’s not where the root challenge existed.  Even a little bit of education in these matters achieved a stakeholder stalemate for trying to figure out how to convert a privatized service into a public good without causing bias to an ongoing free market was no simple matter.  The concept of a public-private partnership was alien.

Dealing with increasing urbanization today requires a systemic stakeholder analysis and just the right sitting of pilot efforts in advance of any at-scale execution plans.  To date few cities have taken this approach but Toronto, Canada is on the way.

“...We are designing a district in Toronto’s Eastern Waterfront to tackle the challenges of urban growth…Sidewalk Toronto will combine forward-thinking urban design and new digital technology to create people-centered neighborhoods that achieve precedent-setting levels of sustainability, affordability, mobility, and economic opportunities” – Sidewalk Labs

To do as Sidewalk Labs proposes there must be an integration of technologies, policies, and financial mechanisms that allow for private and public implementation plans to surface, ones in service of many stakeholders.

  • SAMPLE TECHNOLOGIES AT PLAY
  • IMPLEMENTATION APPROACHES
    • Analyze long-tailpipe electricity generation fuel mixes
    • Promote EVs and pilots ONLY in cities that have clean fuel sources
    • Establish population growth and transport demand metrics
    • Conduct customer interviews to fit future needs
    • Create intelligent city policies to cater to DER and EV microgrids
    • Engage private-sector electric mobility companies
    • Educate citizens on mobility and clean energy options
    • Build neighborhood based pilots
    • Engage citizens via engagement workshops for updates
    • Prepared to pivot for at-scale execution
  • STAKEHOLDERS TO ENGAGE
    • City Planners & Urban Designers
    • Public Entities and Administrators
    • Private Technology Providers
    • EV Manufacturers & Infrastructure Providers
    • Load Balancing Software Solution Providers
    • Private and/or Public Electric Utilities
    • Citizens

 

JMB2408 COMMENT TO ANOTHER BLOG POST (Leaf Plates):

This is an excellent solution to consumption and in turn waste. If this was a compostable solution that can be put to use in the local houseplant or compost pile then we’re talking about a dream conversion in consumption to waste. The other thing that would be amazing is to see this scale to shipping boxes or other high consumption transport items. Awesome find, thanks for sharing.

Cities Get Smart by Prioritizing Mobility

By 2030, 60 percent of the world’s population will live in cities, up from about 50 percent today.  Planners and designers swiftly get transportation logistics, congestion, and air pollution, but when pushed to make urban life better for their citizens they often fail to deliver.  Some urban areas already rank above average and offer integrated multi-model mobility options but these complex offerings to deploy.  Mobility technologies exist (see below) that ease the pain when prioritizing mobility but this is not merely a “tech fix” situation for it requires collaborative stakeholder engagement and implementation planning as well.

Copenhagen has for a long time now housed parking lots full of bikes, their transport lanes throughout the city prefer pedal pushers, and when I was recently there nearly everyone told me they bike more than they use an automobile.  London is building “cycle superhighways” and New York expects to have 1,800 miles of bike lanes by 2030.  Thus, the challenge of bringing smart mobility solutions to urban dwellers doesn’t require fancy new technologies but instead lies in the requirement to establish collaborative planning processes that educate, iterate, and ultimately are built with flexibility in mind.  When driven by the urban subculture it’s apparent.  I just returned from Boulder, Colorado and when there I saw municipal bicycle storage options integrated with public transportation lines; a natural extension of the daily commuters lifestyle.  Don’t think this is something we’re going to see in Atlanta, Georgia anytime soon!

Don’t get me wrong, municipalities are working hard to solve these mobility issues, this isn’t just about meeting citizen’s demands pushed at planners and designers.  Heterogeneous trends in urban mobility have been slowly coming online and one of the most touted “technology” solutions is the high occupancy vehicle (HOV) lane.  The start of smart planning to better manage congestion but then that was taken the next step through innovative laws in states like California that now allow HOV access for electric or hydrogen vehicles too.  Right on the heels of HOV lanes came congestion parking in major metros like New York City and the concept of peak demand parking sits at the bleeding edge of urban mobility, despite nobody having worked out the math just yet.  In fact, new business models are continually trying to deal with the needs for increased data collection and logistical management analysis.  This is clearly the direction smart cities are going but in my research this isn’t as far as it will go in the coming decades.  What comes next will seem extreme but population growth and the demands of urbanization on cities will require ultra efficiency.

For a hint into the future just look at Singapore.  Albeit they’re an island, but because of this they’ve been pushed to their mobility limits ahead of other major metros.  They’ve opted to set aside cars all together and this isn’t solely because they can’t build more suburbs for their commuters and cars.  They’re aware of the laden energy in costs in vehicle manufacturing and the significant potential to reduce CO2 by switching from gas powered automobiles to walking, biking, and electrified forms of mass transit.  In fact, as the Singaporean government lowers their transport and mobility energy profile, they’re guaranteeing the citizens will be able to live healthier lifestyles.  This effort paves the way for systemic shifts and opens the door for a sustainable mobility future; one inclusive of drone package delivery drops, self-service mail centers, automated vehicles (passenger, bus, tram, freight, and corporate fleet solutions), and allows for mobility as a service to flourish as well.

Cities wanting to establish integrated mobility plans and capture the full range of transportation and mobility solutions must take assessment of technology options, perform collaborative stakeholder analysis, and comprehensively implementation plans with a citizen centric approach.  Here are a few places to start:

  • SAMPLES OF URBAN MOBILITY “TECHNOLOGIES”
    • Congestion Pricing – HOV driving lanes, street, & parking
    • Urban Redesign – mobility optimization, curb, & intersection plans
    • Coordinated Actions – private & public sector collaboration
    • “Cycle Superhighways” – extra wide lanes dedicated to bicycles
  • ABBREVIATED IMPLEMENTATION STEPS
    • Establish population growth and transport demand metrics
    • Conduct customer interviews to fit future needs
    • Define the city and citizen archetypes
    • Create intelligent city policies
    • Engage private-sector mobility companies
    • Educate citizens on multi-mode mobility values
    • Leverage academic and startup incubators or accelerators
    • Build neighborhood partnership test pilots
    • Schedule citizen updates via engagement workshops
    • Act boldly and prepared for agile adjustments
  • KEY STAKEHOLDERS
    • City Planners & Urban Designers
    • Public Entities and Administrators
    • Academic Institutions
    • Accelerators and Incubators
    • Technology Mobility Solution Providers
    • Citizens

JMB2408 COMMENT TO ANOTHER BLOG POST (Fast-Charging Busses):

This is conceptually really “smart” but I wonder about what they claim to be able to do vs. what can actually be done. It’s logical to see this sort of quick charging take hold on the public transport lines and it really improves the efficiency of energy use but it’s not a straight forward fossil-fuel free solution until the energy comes from that source. Perhaps in France, with all the nuclear, it makes this ring true but if you put this in Wisconsin it won’t for all you’re doing is displacing the fossil-fuel from the source point at the vehicle to the power generation location. In my analysis there are many instances where the electrification of the transport sector makes things worse for CO2 emissions. Then again, local air quality will always go up so it depends on the objective of the smart city – local solution, regional, or global.

Thanks for sharing, cool tech and more to come I’m sure.

Smart Cities Can Weather a Storm

Hurricane Harvey drenched Texas in August, Irma wreaked havoc in the Caribbean and Florida during September, and in October the United States also had major fire storms that burned in Northern California.  As usual, the media fills their audience with scenes of flooded streets, shelters crowded with people, and shows devastation to people, places, and things.  Where is this all going?  “We need to recognize it will be a new normal, a new and different normal for this entire region,” said Texas Governor Greg Abbot, when asked what the future of storms for cities looks like it will be in years to come.

Smart cities and the keys are held not by positions of politics, as they used to be in the past, in the years to come those will be held by those with the ability to advance plan for and swiftly recover.  On a practical level this often has ties to restoring electricity for those who’ve lost it are the citizens of the smart cities.  Without power efforts to return to normal are slow and often fail to deliver.  Electricity loss makes it impossible for those hit by a storm to normalize and in turn their economic occupations are also put at risk so this is an essential element of resiliency planning and ensuring sustainable futures for those residing in cities.

The primary sustainability problem is how to best plan for a disaster.  Often the focus is on recovery only and in the best of circumstances there are resources allocated to solve challenges caused by disasters, figuring how to best shelter people, fix power outages, etc..  These are reactive in nature and for some time now the trend has been to be proactive.  This is what a smart cities needs to do and in regards to electricity this means establishing grid resiliency is the place to start.  Creating infrastructure and deploying technology solutions in advance of pending storms or disasters assures optimal functioning of critical infrastructure and enables the city to recover quickly.

TECHNOLOGY ELEMENTS IN GRID RESILIENCY MASTER PLANS:

  • Self-Healing Grids
    • Identifies failing sections of the electric network, isolates, and reroutes power
  • Sensors and “Smart Switches”
    • Monitors the grid system and redirects power where needs are optimal
  • Microgrids
    • Smaller power systems that integrate with the grid or work independently

Technologies such as these involve many stakeholders – municipal planners, electricity utilities, technology providers, manufacturers of smart grid equipment, and of course the consumers or users of the electricity (just to name a few).  Large “top down” and master planned systems and their distribution approach the challenges in a way that causes different players to be involved coming from one direction while microgrids work from the opposite direction – consumers to utility as opposed to utility to consumers.  This is a fundamental issue in advance that a smart city needs to accommodate for and that stakeholder process and engagement in itself demonstrates the core value of the smart city.  The technology and the outcomes are secondary, albeit critical.

In establishing a smart city that is prepared to weather a storm in a sustainable way the first thing that needs to be done is develop a feasibility plan, especially when opting to incorporate microgrid technologies.  The next most important thing to do is establish areas of highest priority for power need (hospitals, fire departments, shelters, etc).  This is not simple nor trivial in importance.  For example, when Hurricane Sandy impacted New York City one community that was lucky and to not become devastated was the Hunts Point Market area, in the Bronx.  This area is home to one of the largest food distribution centers in the world and yet there is no microgrid and integrated planning in place to ensure it remains without fault.

In fact, to further this concern, Hunts Point is the gateway to nearly 60% of New York City’s food.  Had electricity been cut off, tons of food would have spoiled, distribution would have been crippled, and millions could have gone hungry.  Establishing feasibility is critical and defining, agreeing, and engaging in priorities with public involvement and the stakeholders is needed well in advance.  Also, even if a smart city can decide on priorities for power requirements it doesn’t mean it can address the issues of financing.  Public-private operations in themselves are significantly complex to negotiate and there is a massive difference in solutions solely run through the utility or a private enterprise endeavor.  In fact, more critical to this is the policy and regulation matters that drive these concerns for even those vary greatly throughout the United States and the pricing models established for ratepayers are far from uniform.  Everywhere it makes sense for a city to ponder these matters and aspire to smart but when considering the use of modern technologies to weather the storms that assuredly to come it means there is no better time than the present to get plans in order.

 

JMB2408 COMMENT TO ANOTHER BLOG POST (Instantly Rechargeable Batteries…a Game-changer for Electric Vehicles!):

You’ve hit most of the big bit bullet points in terms of the inhibitors that stop people from getting into an electric vehicle and buying. There is no doubt the charging infrastructure is an issue and has been used as an excuse for a long time now. If this technology can deliver, then it would be a game changer BUT it won’t address the other big problem – range anxiety – unless it really is nearly as fast as a fill up.

A lot of the “smart city” solutions are hitting the VW settlement funds to roll out chargers (think EVgo – https://www.evgo.com) and that can only work for so long. It’s exciting to see a push for technologies like this but it points to the bigger problem, who pays? If a gas station business model then this works fine as it’s just another pump, but if it’s a whole new set of infrastructure this is an issue that no city is prepared to manage well, especially one as large as New York City.

Thanks for sharing, cool work here!

Smart Water Sensing Technologies

The World Wildlife Fund states that by 2025, two-thirds of the world’s population may face water shortages and ecosystems around the world will suffer even more.  In addition, an excess of 6.5 billion people are projected to live in cities by 2050, according to recent UN estimates.  The sustainability problem of water scarcity is mounting at a global scale but solutions require highly localized implementation.  We are well beyond mere civil engineering matters at this point and pressures are also growing for cities to get “smart.”  This means that looking to improve water and wastewater management, power generation, and urban demands on rural agricultural production are at the top of the list.  The matter of addressing water scarcity involved many stakeholders – householders, residential and commercial property owners, industrial operations, municipalities, water utilities, regulators, policy makers, lawyers, ecosystems, and farming communities.

This matter of water access is an age old one and has made the big screen more than once (think back to 1974 and the movie Chinatown) but today water is increasingly being managed like a commodity (think the documentary Water & Power: A California Heist) and has become a driver of fear to the point of perception that we’re on the bring of a age of water wars.  To date the value of predictive analytics and maintenance of water based assets has been touted as an area of great hope for these concerns but many of these management approaches and their associated methodologies have sought to conserve water, reduce scheduling of repairs costs, maintenance efforts, and eliminate failures without accounting for many “soft” factors.  Worse, these tactics neglect lower hanging fruit that is readily available.  For example, during a period of about 18 months during the years 2013-2015 the largest provider of water and wastewater services in the United Kingdom, Thames Water, worked with Accenture to try to figure out how to best use sensors, analytics, and real-time data to “help the utility company anticipate equipment failures and respond more quickly to critical situations, such as leaks or adverse weather events.”  A good and necessary start but far from systemic when considering the scale of implementation plans needed for the years 2025 to 2050.

Today water management and smart water sensing technologies exist even for the DIY home owner and this is indeed a great place to start.  It’s low hanging fruit like residential consumers that can lead to increasingly addressing other higher volume end points of water consumption.  Installing Advanced Metering Infrastructure (AMI) is nearly a dead ringer for water utilities so they can better mange for otherwise they’re unable to measure and that’s a death spiral nobody can afford these days.  The growing pressures on infrastructure that urbanization will bring with it are well known and so to get a smart city one must prepare for growth in commensurate ways that are also able to process the worldwide urbanization phenomena.  Smart water sensing technologies and in turn the education of water consumers is a logical place to start for at scale impact.

 

JMB2408 COMMENT TO ANOTHER BLOG POST (Automated Underground Bike Storage):

This concept of storage is pretty amazing in high density environments and of course next to nowhere in the United States will this ever generate enough users to financially justify it but it’s really amazing to think it could be part of a future “smart” city plan. In Boulder, CO there are a lot of bikers and some amazing bike lock options in cage-like structures near the train stations and public transit. A scaled down version of this but one applicable in the United States.

 

Smart Cities & Off-Grid Energy Storage Systems

“Reliable Power Day and Night,” that’s what a Tesla Energy residential energy battery storage solution promises.  For better and worse, the Tesla Powerwall is no longer just for the few seeking off-grid energy storage systems and want to mitigate against utility outages.  In fact, smart energy offerings such as this are well beyond the top branded Tesla EnergySunrun launched their BrightBox solar-plus-storage product offering, Orison audaciously funded a home storage product through a Kickstarter campaign, and even the old school engineering firms such as Lockheed Martin have taken a foray into the energy management and storage market.

From a citywide sustainability perspective these solutions support the growing public desires to reduce dependency on fossil fuel burning energy sources so we should be pleased these technologies have emerged.  Thing is, their capacities to deliver beyond green washing are vast and actually executing this at scale requires sophisticated regulatory and infrastructure coordination, not to mention a whole other set of technologies for load balancing.  Scaling such offering at a citywide level, well, that’s even more complicated.  Yes, this is what a smart cities should be doing to ride the wave of consumer demand that has gone beyond the need to build a bug out shelter for the next Zombie Apocalypse but integrating solar or renewable energy systems such as wind with battery storage is unfortunately a wicked problem.  In executing these CO2 reducing and intelligent energy management solutions there are significant secondary outcomes.  At the top of the list is the challenge of dealing with the historically denoted “consumer,”  that in the process become a producer.  Hands together now, let’s welcome the prosumer to the stage; the true problem child for energy utilities!

How does an electric utility (one only ever known to sell energy) deal with this new bread called a prosumer?  If all producers install off-grid energy storage systems, what is the new role and responsibility for an electric utility?  In this position, can they garner sufficient income to pay for the maintenance of wires and poles?

To solve these challenges there must be significant regulatory involvement in advance of the transition.  Equipment manufacturers and system integrators also need to find ways to make commercially viable solutions that capitalize on consumer demand, but do so in a way so as to not send out a cry and in turn initiate a utility death spiral; ultimately leaving those without an ability to participate in this new energy marketplace footing the bill for the the entire delivery system.  Lastly, through smaller scale pilot projects all the stakeholders can work out best in class methodologies that will take us from where we are to where we clearly are going.

Thankfully, innovative energy marketplaces and regulators are seeing themselves as critical catalysts and the stakeholders in this new world of distributed energy resources (DERs) are stepping up on a global scale.  Pilot projects have begun and successes through public-private partnerships are happening.  The 2016 Southern California Edison and Tesla unveiling of the world’s largest energy storage facility and the New York City program called NY REV have led the way.  Each is but a portion of larger deployment plans for grid-connected storage batteries and both seek to reduce fossil-fuel reliance.  Comprehensive energy strategies initiated in this way will be a win-win for the utilities that want to defray the costs of replacing peakers plants reaching retirement age and for the prosumer wanting to help reduce CO2 emitting fuel in the energy mix.

 

thoughts on “Internet of Trees – When You Give a Tree an Email Address”

  1. Wow, this is really creative! It makes the trees “come alive” and is pretty amazing for potential in many ways to come. I can only begin to imagine how many other things could be categorized and brought into the electronic fold this way. I’m not sure the value of the email as a form of representation and would like to see that stepped up a bit but it’s a start. Surely the more things in cities get tagged the future will show geocaching is not just for those that are high tech in nature.

Disaster Planning & Rural Communication Challenges: adhoc networks between mobile devices in the absence of Internet and cellular services

Natural disasters, community events, festivals, and gatherings are increasingly driving the need for hyper-local communications.  The growing high standards of expectation that cellular and Internet technologies will persist, even in the face of such unusual circumstances has been difficult to satisfy.  In fact, in many rural areas of the world there is a lack of this communications infrastructure in the first place.  These village-like social environments are the foundations of sustainable communities for without them chaos rules.  As any city or community planner knows, communications are critical in planning for disaster mitigation, well ahead of solutions based on “hardening” infrastructure (build bigger walls, flood gates, stronger buildings, etc.).

Why?  It’s well documented that the potential for a resilient city to rebound when impacted by natural disaster or a for a community in isolation to become more productive they are tied to the need for improved communications.  Further, the movement to make cities more resilient is well underway and solutions such as FireChat are within a group of new generation mobile apps that allows users to communicate with other nearby iOS devices without Internet or mobile phone coverage.

Download it: iOS and Android

Adhoc mesh networking solutions such as this fall within a set of technologies that can be used in a variety of ways.  Again, most aide those who seek to further enable capacity building at a citywide or community scale.  Recently ranked as a top 10 among social networking apps and already in use within 124 countries, this is a niche solution for sustainable cities seeking to support their communities when in most need.

Use case examples:

  • Floods in Kashmir (April 2015) and Chennai (October 2015), a volcanic eruption at Cotopaxi in Ecuador (August 2015), and in Mexico during hurricane Patricia (October 2015).
  • Event use such as during pro-democracy protests in Taiwan (April 2014) and Hong Kong (September 2014) or the anti-corruption movement within Bersih, Malaysia (August 2015), or the Pope’s visit to the Philippines (January 2015).
  • Elections such as the ones in Venezuela (December 2015) and Republic of the Congo (March 2016).
  • Festivals in India, Canada, and throughout the US; think Burning Man.

Stakeholder analysis is simple here for the requirements to use the technology are minimal; users with mobile devices in need fill the whole bucket.  If a city or a community seeks to scale this technology, then local disaster shelters, hospitals, care centers, event and festival information booths, etc. can weigh in to provide their own wireless WiFi networks and in turn grow their reach of how to communicate with those in need.  Deploying this technology is simple: educate, promote, and as needed support.