Smart meter for water use monitoring

IT_2016_Calliope2-2000x1200

 

Sustainability problem: Water

Approximately 18% of water used in residential homes is lost as a result of leaks. This can result in an annual loss of 13,000 gallons of water per household.

Technology summary:

  • Calliope’s Bouy is whole-house water flow meter that is connected to a house’s water supply to monitor water use.
  • Bouy incorporates machine learning and predictive analytics to provide real-time water use insights about how much water is being used by which devices.
  • Bouy provides also provides real time data about when and where leaks occur and other waste via an app.

Stakeholders:

  • Homeowners and building owners
  • Water utilities
  • Individuals in drought stricken areas
  • Plumbers
  • Contractors installing the technology
  • Home improvement retailors

Implementation:

  • Educate consumers about benefits of the technology via marketing campaigns
  • Seek partnerships with water utilities in dought-stricken areas to promote adoption of the technology
  • Increase commercial availability by partnering with home improvement retailors

References:


Comment on You Can’t Spell ‘Carbon Nanotube Electricity’ Without ‘Yarn’

As an alternative to yarn made with carbon nanotubes, energy can be harvested from other fabrics via piezoelectric generators to harvest energy from stress and strains and triboelectric generators to harvest energy generated from friction. However, these generators are costly and have a low efficiency making carbon nanotube technology a superior option.

Smart Urban Growth Tackles Mobility and Electricity Distribution Concurrently

Cities can get smart taking control of their electrical grid and electric vehicle (EV) charging infrastructure as a means of addressing urban growth.  Boulder, Colorado is making a run at it but few outside Germany have taken a serious move in this direction for it requires a long-term vision.  Seeking this urban planning route is not always initiated for economical reasons.  Boulder, for instance, is driven to engage as a means of increasing renewable energy sources in their electricity generation fuel mix.  Here’s the catch, this approach may not a scalable or sustainable solution for all cities  Mega cities; no way anytime soon.  Rural environments; not likely ever needed.  So, Boulder just happens to sit in the Goldilocks Zone but even with it being “just right” the increasing digitalization of the electric grid and new sources of distributed energy will make this endeavor a tenuous pursuit.

Years ago I was involved in dozens of negotiations with municipalities throughout the United States, Canada, and Mexico.  Many desired to “take control” of and then offer, as a public service, wireless Internet services for their citizens.  The complexities in equipment management and selection, maintenance, and budgeting were often solely regarded in the context of whether to make the WiFi a free or a for a fee amenity to subscribers.  Thing is, that’s not where the root challenge existed.  Even a little bit of education in these matters achieved a stakeholder stalemate for trying to figure out how to convert a privatized service into a public good without causing bias to an ongoing free market was no simple matter.  The concept of a public-private partnership was alien.

Dealing with increasing urbanization today requires a systemic stakeholder analysis and just the right sitting of pilot efforts in advance of any at-scale execution plans.  To date few cities have taken this approach but Toronto, Canada is on the way.

“...We are designing a district in Toronto’s Eastern Waterfront to tackle the challenges of urban growth…Sidewalk Toronto will combine forward-thinking urban design and new digital technology to create people-centered neighborhoods that achieve precedent-setting levels of sustainability, affordability, mobility, and economic opportunities” – Sidewalk Labs

To do as Sidewalk Labs proposes there must be an integration of technologies, policies, and financial mechanisms that allow for private and public implementation plans to surface, ones in service of many stakeholders.

  • SAMPLE TECHNOLOGIES AT PLAY
  • IMPLEMENTATION APPROACHES
    • Analyze long-tailpipe electricity generation fuel mixes
    • Promote EVs and pilots ONLY in cities that have clean fuel sources
    • Establish population growth and transport demand metrics
    • Conduct customer interviews to fit future needs
    • Create intelligent city policies to cater to DER and EV microgrids
    • Engage private-sector electric mobility companies
    • Educate citizens on mobility and clean energy options
    • Build neighborhood based pilots
    • Engage citizens via engagement workshops for updates
    • Prepared to pivot for at-scale execution
  • STAKEHOLDERS TO ENGAGE
    • City Planners & Urban Designers
    • Public Entities and Administrators
    • Private Technology Providers
    • EV Manufacturers & Infrastructure Providers
    • Load Balancing Software Solution Providers
    • Private and/or Public Electric Utilities
    • Citizens

 

JMB2408 COMMENT TO ANOTHER BLOG POST (Leaf Plates):

This is an excellent solution to consumption and in turn waste. If this was a compostable solution that can be put to use in the local houseplant or compost pile then we’re talking about a dream conversion in consumption to waste. The other thing that would be amazing is to see this scale to shipping boxes or other high consumption transport items. Awesome find, thanks for sharing.