Worn Again: circular textile recycling technology for (almost) zero textile waste

1. Sustainability Problem: Textile waste

The U.S. EPA estimates that textile waste occupies nearly 5% of all landfill space.

While the EPA estimates that the textile recycling industry recycles approximately 3.8 billion pounds of post-consumer textile waste (PCTW) each year, this only accounts for approximately 15% of all PCTW, leaving 85% in our landfills.

The average US citizen throws away 70 pounds of clothing and other textiles annually.

Decomposing clothing releases methane, a harmful greenhouse gas and a significant contributor to global warming. There are dyes and chemicals in fabric and other components of clothing and shoes that can leach into the soil, contaminating both surface and groundwater.

2. Technology solution: Worn Again

Worn Again has been developing chemical recycling for over three years and through trials and lab experiments they are perfecting a process where solvents are used to selectively dissolve different types of textiles, recapturing them as a raw material, which can be used to make new clothes, thus being reintroduced into the supply chain as new. Within the Textile Sorting Project Worn Again is dedicated to achieving the shared goal of creating circular supply chains for textiles through collaboration and new technologies.

The tests for this new technology, which will be monitored by H&M and Puma, are built around separating and extracting polyester and cotton from blended fiber clothing. Another task will be to separate dyes and other particles from polyester and cellulose, which has always been a challenge when recycling. The raw materials that are recaptured can then be used to spin new fabric for clothes. This circular process will have an extremely positive effect on bringing down the need for virgin resources and as such reduces carbon emissions, as well as the use of toxic pesticides, chemical fertilizers or exhaustion of land for growing crops.

Worn Again isn’t the first to develop a textile-to-textile technology. In 2014, Swedish scientists developed a process to recycle cotton by shredding clothes to pulp and turning the substance into threads of viscose. The company responsible for making the pulp is now preparing its first fabric-recycling factory and teaming up with several entrepreneurs in the textile industry.

The stakeholders

  • The product developer (Worn Again)
  • The subsidizing companies (H&M, Puma)
  • Local governments / NGOs to foster usage of this product

Deployment

  • The team is currently engaged in full time development of a circular recycling technology for the textile and clothing industry, working closely with its’ development partners, H&M and Kering Group’s Sports & Lifestyle brand Puma.
  • H&M and Puma have enough infrastructure to deploy the product worldwide with a strong marketing campaign. However, costs should be mitigated in order to make the products accessible and the process economically viable.
  • Consequently, support from NGOs and local governments is key to allow tax reduction on recycled clothing and recycling plant set-up in order to lower costs as present them as feasible alternatives.

Links

Advertisements

Two Entrepreneurs Turn Waste Into A Business

source: http://www.forbes.com/sites/eshachhabra/2016/07/28/two-entrepreneurs-turn-waste-into-a-business/#3f7e25ea107c

Sustainability Problem

Growing cotton is water intensive process and growing appetite for consumption with fashion leads sustainability problems or we should focus on recycling and efficiency. We should start focusing on sustainable fashion which these two entrepreneurs do. Besides it seems as good as new! 🙂

Technology Article Summary

They focused on large scale factories which usually trashes %10-%15 and they break down that fabric to fibers once again. By doing so they eliminated wasteful step in manufacturing clothes which is dying, as the textile had already been dyed. They claim that this can save 2700 liters of water which would be likely contaminated with chemical as not all of the dyers are not non-toxic and consequently that waste water mixes with local water sources such as Tirupur River

Pesola says that 95 percent of textile fibers can be recycled, “Not only can it be recycled,” he explains “but it’s actually cheaper, if we work in volume, because we don’t have to go through the dying process.” The aim of the new unit in India is mass production from recycled materials. Besides by repurposing material and sewing it in proximity, it will lower the carbon footprint, cost and make it easier to manage.

Stakeholders

Consumers, Humankind in general

Deployment

Its Already, has developed an annual turnover of 1 million euros.  “The first two years has been more about R&D and setting up the production unit,” Bengs indicates.  But now with the plant scheduled to be complete by 2017, they focused on pushing sales  with a team of 10 in Helsinki, 5 in Mumbai, and 200 in Tamil Nadu.

I think it could be evolved movement of awareness in fashion after Toms Shoes. It definitely needs celebrity attention in USA tho. 🙂

source: http://www.forbes.com/sites/eshachhabra/2016/07/28/two-entrepreneurs-turn-waste-into-a-business/#3f7e25ea107c

Fabric Made of Food

qmilk

Problem: Milk Waste 

In Germany every year 1.9 million tons of good milk is disposed of . This waste is costing manufacturers, as well as contributing to food waste and landfill overspill.

Technology: “When Technology Meets Fashion” by Charles Morley

In 2011, German micro-biology student, Anke Domaske, discovered t a way to make textiles out of milk, tea and coffee beans. She then launched Qmilk, which produces fabrics made from 100% biodegradable/renewable materials, mainly raw cow milk. In order to do this “you add the protein powder – it looks like flour – to water and you mix it into a dough. Then there’s a nozzle at the end with teeny tiny holes that put out textile fibres instead of noodles”. Qmilk 1 kg of fiber only needs 5 minutes to produce and max. 2 liters of water, this means it can be more cost efficient as well as produce fewer CO2 emissions. finally, it is naturally antibacterial, which means it can be used for those with sensitive skin or textile allergies.

Stakeholders:

Qmilk tech engineers/designers

Technological partners

Investors

Fashion designers

Clothing retailers

Customers

Implementation:

In order to implement this technology on a large-scale, a number of investors need to be introduced

Qmilk is a small company, based in Germany. In order to spread the technology, it must be introduced to the US market and other European countries that have a big influence in the fashion industry.

Fashion designers must begin to use the technology to introduce the innovation to the public and encourage its usage down the supply chain i.e. factories and low-end designers/retailers.

Sources:

When Technology Meets Sustainable Fashion

http://de.qmilk.eu/presite/index_en.html

https://www.theguardian.com/sustainable-business/sour-milk-fibres-textiles-qmilk

 

Smart Tailoring

smart tailoring

Problem: Textile Waste

Textile waste is a major issue in the fashion industry, leading to increased waste material and cluttered landfills, not to mention wasted time, energy and money.

Technology: “10 awesome innovations changing the future of fashion” by Melissa Breyer

A new technology produced by Indian designer, Siddhartha Upadhyaya, called the Direct Panel on Loom (DPOL), also referred to as Smart Tailoring, is way to increase fabric efficiency by up to 15%. It can also reduce lead time by 50%. “By using a computer attached to a loom, data such as color, pattern and size related to the garment is entered, and the loom cranks out the exact pieces — which then just need to be constructed.” With this technology, weaving, fabric cutting, and patterning happen all at once. This process ends up minimizing fabric waste and saves energy and water by 70-80%.

Stakeholders:

Smart Tailoring tech engineers/designers

Technological partners

Investors

Fashion designers

Clothing retailers

Customers

Implementation:

In order to implement this technology on a large-scale, a number of investors need to be introduced

Smart Tailoring should start a campaign marketing the technology to both low-end and high-end textile suppliers, proving that the process could be cheaper in general, save the company money, time and energy

Fashion designers must begin to use the technology to introduce the innovation to the public and encourage its usage down the supply chain i.e. factories and low-end designers/retailers.

Sources:

http://www.treehugger.com/sustainable-fashion/10-awesome-innovations-changing-future-fashion.html

http://www.treehugger.com/style/high-tech-meets-low-waste-in-new-computer-generated-eco-fashion.html

 

Water and Pollution in the Textile Dyeing Industry

parsons-airdye-7

Problem: Water Usage and Pollution Caused by Dyeing Textiles

Textile dyeing is estimated to cause 17-20% of the global industrial water pollution. Until recently, little attention was given to the environmentally harmful effects of the dyeing process, when it comes to chemicals, waste, and water usage.

Technology: 10 Awesome Innovations Changing the Future of Fashion” by Melissa Breyer

  • A new technology, AirDye developed in California by Colorep, works with proprietary dyes to transfer color with heat from paper to fabric in a one-step process.
  • Basically, it has created a software that “computes color recipes that reproduces the specified color reflectance curve on a target substrate”.
  • This process has the potential to save between 7 and 75 gallons of water in the dying of a pound of fabric. It can save energy and produces no harmful chemical by-products.
  • Furthermore, the technology uses 85 percent less energy than traditional dying methods.

Stakeholders:

  • AirDye tech engineers/designers
  • Colorep engineers
  • Technological partners
  • Investors
  • Fashion designers
  • Clothing retailers

Implementation:

  • In order to implement this technology on a large-scale, a number of investors need to be introduced
  • Fashion designers must begin to use the technology to introduce the innovation to the public and encourage its usage down the supply chain i.e. factories and low-end designers/retailers.  For example, AirDye has become a vital component to the designers Costello Tagliapietra and Gretchen Jones and was used for their Fall 2012 collection
  • Governments in countries that manufacture dyed textiles should subsidize this technology to consumers (factories and managers who buy it) so that it can bring down the price, encourage product development, establish familiarity of the product, ensure future customers and therefore be more easily implemented in the thousands of dyeing factories around the world.

Sources:

http://www.theguardian.com/sustainable-business/water-scarcity-fashion-industry

http://www.treehugger.com/sustainable-fashion/10-awesome-innovations-changing-future-fashion.html

http://www.bloomberg.com/research/stocks/private/snapshot.asp?privcapId=20376121