New Textile Technology Makes Leather Alternative From Discarded Pineapple Leaves

1. Sustainability problem: leather production

The textile industry produces a lot of leather. The production of leather is extremely resource-intensive (water, land, food, fuel) and produces large amounts of waste, including toxic chemicals used in tanning. Faux leather (e.g., made from PVC) is another prevalent material and is not a sustainable material either as its production and disposal release a lot of toxic materials into the environment.

Category: Waste

2. Technology Summary

Source: “63-Year-Old Designer Creates Faux Leather From Pineapple Leaves”, Greenmatters (http://www.greenmatters.com/living/2017/10/19/Z1Y0sHm/63-year-old-designer-creates-faux-leather-from-pineapple-leaves)

  • This article discusses a materials technology innovation called Piñatex, which is a material made from discarded pineapple leaves and serves as an alternative to leather and faux leather
  • As pineapple leaves are a crop by-product, creating the material is not resource intensive, requiring no additional water, land, fertilizer, or fuel to make the material
  • Sourcing pineapple leaves from pineapple farmers also provides these farmers with an additional revenue stream
  • The resulting material can be mass-produced and used for virtually everything that leather could be used for, including apparel, shoes, bags, car seats, and upholstery
  • This material is produced in a closed loop process, starting with sourcing the pineapple leaves directly from farmers, returning any waste products during production to pineapple farms to be used as fertilizer, and composting piñatex materials at the end of a product’s life

Tags: #textiles #materialsresearch #fashion #sustainability #closingtheloop #cradletocradle

3. Stakeholders

Piñatex is currently only distributed in a brand-to-brand (B2B) format. Therefore, the key stakeholders are companies that currently design products with leather or faux leather. Specifically, design teams would need to learn about the material and design with this material in mind.

End customers are another stakeholder as they could drive demand for this material, asking companies to include this material in their collections in the future.

4. Deployment Strategy

  1. Proactively send samples to key companies that design with leather and/or faux leather and have sustainability goals, e.g., Eileen Fisher (fashion), Veja (shoes), Matt and Nat (bags), Tesla (car seats), etc.
  2. Build relationships with fabric retailers in cities with large fashion industries (e.g., New York City, Los Angeles, London, Berlin, etc.)
  3. Explore partnering with pineapple farmers in other parts of the world to increase production and reduce the carbon footprint for customers in other parts of the world (other top pineapple producing nations are Costa Rica and Brazil)

5. Comment on Another Post

I commented on “Sensor-Packed Pedestrian Crossing”

The article also discusses how this sensor-based crossing is envisioned to be integrated into the road. A responsive, sensor-based surface made of steel would be integrated under the regular road surface. On the top of these two layers of the road would be the LED lights, covered in a high-impact plastic to prevent damage from vehicles and weather.

 

Worn Again: circular textile recycling technology for (almost) zero textile waste

1. Sustainability Problem: Textile waste

The U.S. EPA estimates that textile waste occupies nearly 5% of all landfill space.

While the EPA estimates that the textile recycling industry recycles approximately 3.8 billion pounds of post-consumer textile waste (PCTW) each year, this only accounts for approximately 15% of all PCTW, leaving 85% in our landfills.

The average US citizen throws away 70 pounds of clothing and other textiles annually.

Decomposing clothing releases methane, a harmful greenhouse gas and a significant contributor to global warming. There are dyes and chemicals in fabric and other components of clothing and shoes that can leach into the soil, contaminating both surface and groundwater.

2. Technology solution: Worn Again

Worn Again has been developing chemical recycling for over three years and through trials and lab experiments they are perfecting a process where solvents are used to selectively dissolve different types of textiles, recapturing them as a raw material, which can be used to make new clothes, thus being reintroduced into the supply chain as new. Within the Textile Sorting Project Worn Again is dedicated to achieving the shared goal of creating circular supply chains for textiles through collaboration and new technologies.

The tests for this new technology, which will be monitored by H&M and Puma, are built around separating and extracting polyester and cotton from blended fiber clothing. Another task will be to separate dyes and other particles from polyester and cellulose, which has always been a challenge when recycling. The raw materials that are recaptured can then be used to spin new fabric for clothes. This circular process will have an extremely positive effect on bringing down the need for virgin resources and as such reduces carbon emissions, as well as the use of toxic pesticides, chemical fertilizers or exhaustion of land for growing crops.

Worn Again isn’t the first to develop a textile-to-textile technology. In 2014, Swedish scientists developed a process to recycle cotton by shredding clothes to pulp and turning the substance into threads of viscose. The company responsible for making the pulp is now preparing its first fabric-recycling factory and teaming up with several entrepreneurs in the textile industry.

The stakeholders

  • The product developer (Worn Again)
  • The subsidizing companies (H&M, Puma)
  • Local governments / NGOs to foster usage of this product

Deployment

  • The team is currently engaged in full time development of a circular recycling technology for the textile and clothing industry, working closely with its’ development partners, H&M and Kering Group’s Sports & Lifestyle brand Puma.
  • H&M and Puma have enough infrastructure to deploy the product worldwide with a strong marketing campaign. However, costs should be mitigated in order to make the products accessible and the process economically viable.
  • Consequently, support from NGOs and local governments is key to allow tax reduction on recycled clothing and recycling plant set-up in order to lower costs as present them as feasible alternatives.

Links

Digital Printing: A Possible Revolution for Dyeing Textiles

digital printing

Problem: Textile Waste and Water Use Caused by Fabric Dying  

Traditionally dying textiles causes a number of environmental problems like excessive use of water and landfill overspill due to textile waste.

Technology: 10 awesome innovations changing the future of fashion10 awesome innovations changing the future of fashion” by Melissa Breyer

One technology, digital printing, implemented by Huntsman Textile Effects, uses a process in which prints are directly applied to fabrics with printers, reducing 95% the use of water, 75% the use of energy, and reducing fabric waste. Huntsman does this with a variety of different inks like acid ink, disperse ink, pigment ink and reactive dyes, all of which use cutting-edge technology to create more sustainable products.

Stakeholders:

Huntsman tech engineers/designers

Technological partners

Investors

Fashion designers

Clothing retailers

Customers

Implementation:

In order to implement this technology on a large-scale, a number of investors need to be introduced

Huntsman is worldwide big company, however, it only manufactures in China, Germany, India, Indonesia, Mexico, Thailand. It must be introduced to the US market and other other European countries that have a big influence in the fashion industry.

Fashion designers must begin to use the technology to introduce the innovation to the public and encourage its usage down the supply chain i.e. factories and low-end designers/retailers. For example, it has already been used by designers like Mary Katrantzou, Alexander McQueen and Basso & Brooke.

Sources:

http://www.treehugger.com/sustainable-fashion/10-awesome-innovations-changing-future-fashion.html

http://www.huntsman.com/textile_effects/a/Solutions/Textile%20End%20Use%20Solutions/Digital%20Printing

http://www.huntsman.com/textile_effects/a/About%20Us