Flying Cars? Flying Cars!

UK Flying-Taxi Hub Aims to Develop Blueprint for Aerial Roads, by Christopher Jasper

Post by Joshua Herrig, JLH2208

Problem: Traffic congestion in cities causes health problems from exhaust pollution and inefficiencies of worker commutes and deliveries for goods and services for restaurants and businesses. It’s also an aesthetic blight on a city and a danger to bicycle drivers and walkers.

Solution: A hub for flying taxis and cargo drones is being built and trial operations will begin by the end of 2021 in Coventry, England, a city of 400,000 people. This will then test “aerial roads” for the taxis and cargo drones that then can be further developed and refined for efficiencies and safety. It will also be an electrical vehicle charging center.

Once the stuff of science fiction, flying taxis and logistic drones now have test pilot programs in Singapore and Florida. All of the programs hope to alleviate traffic from delivery trucks and eventually commuters.

There are still many hurdles to fully implementing flying cars into the fabric of urban life. The first problem is that these flying taxis will initially be very expensive. Another problem is safety and perceived safety. Until the program is up and running it may prove difficult to get enough people to take the flights. Also, the logistics of using the flying taxi won’t make much sense for most people who would have to drive to the hub and then commute to their destination. Also the building out of infrastructure for where these taxis and delivery drones can land needs to be fully implemented.

Despite these hurdles I hope that our future does have flying cars in it and congested highways and city roads will be a thing of the past.

Stakeholders: City government of Cambria, the company Altitude Angel, and citizens and business owners of Coventry, UK.

Implementing the technology: 1. Building the physical hub, building the flying taxis and cargo drones 2. Test flying them 3. Figuring out logistics of where best to have “aerial roads” 4. building infrastructure on where these fling taxies and cargo drones can land and take off 5. Actually running and operating the hub and taxis with real customers.

EVTOL: What they are, when they’ll be here, and how they’ll change how you get around

  1. EVTOL’s will have the ability to address sustainability issues in several categories. It would continue the movement to electrify many delivery services, and potentially in the future, passenger transport. In doing so, delivery services could improve temporal and fuel efficiencies. This could have implications on issues of energy, waste, and the safety and health of the public.

2.

  • AVTOL stands for Electric Vehicle Takeoff and Landing, which is an acronym that refers to the vehicle’s ability to takeoff and land without the need of a runway. It’s basically like a very large drone in most cases, although the propulsion systems can vary a bit. These types of vehicles can be more efficient than helicopters in that they have wings so they fly more like a typical aircraft, so they take less energy to keep them moving forward at faster speeds.
  • There are many companies that are working on developing and implementing this technology from aerospace engineering firms to major companies that require intense logistics that are funding some of the R&D that is taking place. There are also some municipalities that are already testing this technology (one of them we discussed in class!).
  • EVTOL’s can potentially be used in the not-so-distant future to transport passengers and cargo over relatively short distances in a manner that is much more efficient that your standard transit methods now for reasons such as environmental impacts and time spent traveling.
  • EVTOL’s are supposedly super safe! And some firms are saying that they anticipate to implement these in public applications as soon as 2024.

Article Title: EVTOL: WHAT THEY ARE, WHEN THEY’LL BE HERE, AND HOW THEY’LL CHANGE HOW YOU GET AROUND

Website Name: Inverse

Website Link: https://www.inverse.com/innovation/flying-cars-are-already-here

3. Stakeholders include:

  • Travelers/Commuters
  • Logistics Companies (UPS, FedEx, USPS, Amazon, etc.)
  • Ride-Hailing Services (Uber/Lyft/Blade, etc)
  • Aerospace Engineering Firms

4. It seems that the steps taken thus far to begin implementing technology have been the proper ones. In order to roll out a technology as transformative as this, it must go through rigorous R&D including years of testing to ensure it is safe for the Public. Second would be the regulatory hurdles to actually get these aircrafts in operation – this is going to be a substantial speed bump. It seems an entire framework would need to be built to essentially have flying cars hovering above our neighborhoods and potentially cities with high-rise buildings; seems like a lot to address. Thirdly, the infrastructure would need to be built to allow these aircrafts to operate effectively. I am not entirely sure what this would entail, but I would imagine similar to building small heliports and some sort of air traffic control center to link everything together.

Amazon’s Use of Rivian’s Electric Vans as Delivery Vehicles

Emily Tregidgo – emt2179

Source: https://coloradosun.com/2021/04/27/amazon-electric-vans-denver-rivian/

1) Sustainability Problem:  Energy (Transportation)

70%+ of the energy that comes in the form of crude oil goes into the transportation sector1. In 2019, transportation was the largest contributor to greenhouse gas emissions (29%) in the United States. The transportation sector’s reliance on fossil fuels and global reliance on transportation creates a handful of sustainability problems, including pollution and emissions. Electric vehicles can help to address some of these challenges, although it is worth noting that EVs themselves require charging from a grid that also relies heavily on fossil fuels and contributes to greenhouse gas emissions, and that the materials for the batteries (both sourcing and disposal) also have environmental impacts.

2) Sustainability Technology: Rivian Electric Vans

Amazon’s first electric vans started delivering packages in the Denver area this week (4/27/2021)

  • Amazon plans to use Rivian’s electric vans in 16 US locations. They began to use them in Denver, Colorado in late April 2021. The use of these electric vans is of particular interest to Coloradans because SUVs and trucks are the most popular vehicle types in the state.
  • The Colorado Parks and Wildlife Commission approved the installation of public charging stations in every state park. Furthermore, the Regional Air Quality Council granted Amazon $71,000 (through the Charge Ahead Colorado grant) for seven charging stations. It is anticipated that the first of these charging stations will be installed in July.
  • The Amazon vans have an expected range of 150 miles, whereas consumer models (R1T electric truck and R1S electric SUV) have an expected range of 300 miles. 
  • Rivian has raised $8bn in venture funding (as of January 2021), and has sold out its launch edition vehicles (the preorders of which are expected to be delivered this summer). All future vehicle pre-orders will not be delivered until 2022. 
  • Amazon will continue other electric vehicles in its fleet as well (20 million Amazon packages in North America and Europe have already been delivered by electric vehicle), and anticipates that by next year it will have 10,000 Rivians in use as delivery vehicles.

3) Stakeholders

  • Amazon (delivery team)
  • Vehicle users (should they purchase a Rivian vehicle)

Additional stakeholders:

  • Rivian (and investors)
  • State regulatory and governing bodies, e.g. Colorado Parks and Wildlife Commission, Regional Air Quality Council

4) First Three Steps in Deploying This Technology

  • Assess feasibility of integrating Rivian vans into Amazon’s fleet and the broader transportation infrastructure in the areas to which Amazon delivers.
  • Raise awareness of the Rivian vehicles to market to a wider consumer base.
  • Invest in the ability to grow the charging infrastructure concurrently with the demand for these vehicles.

Sources:

1Class: Energy Markets and Innovation

https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions#:~:text=The%20primary%20sources%20of%20greenhouse,share%20of%20greenhouse%20gas%20emissions.

https://coloradosun.com/2021/04/27/amazon-electric-vans-denver-rivian/

Open Charge Point Protocol

1. Problem: Electric Vehicle Charging Fragmentation
Sustainability Category: Energy Management, Mobility

29% of total greenhouse gas emissions in the United States are from transportation with internal combustion engine vehicles being the highest source. With only about 1% of cars on the road being electric today, range anxiety from the lack of widespread charging infrastructure is a primary adoption barrier.

As the electric vehicle (EV) charging technology sector develops, closed charging infrastructure networks generate friction for hardware manufacturers, software developers, and drivers. Electric vehicle infrastructure developed by private network operators create silos that limit value for stakeholders. Industry fragmentation forces EV drivers to join multiple networks with varying accounts to access public chargers. The lack of standards leads to duplicative development effort to integrate charging stations and backend networks with energy systems. This limits providers from offering additional features across all providers.


2. Solution: Open Charge Point Protocol (OCPP)


The Open Charge Point Protocol (OCPP) is a charging infrastructure standard for EV charging station, Electric Vehicle Supply Equipment (EVSE), and back end software communication. OCPP reduces friction and fragmentation by increasing flexibility across the electric vehicle infrastructure industry for organizations and drivers.

— OCPP is an open-source, free standard published by Open Charge Alliance (OCA) that enables interoperability between charging infrastructure hardware and software networks.
— This neutral, open standard enables charging station vendors to access, share, and collect data with backend charge management operators so the widest amount of products can work together.
— On the charging station, OCPP enables charging station discovery, reservations, session authorization, billing information collection, and real-time charging data.
— On the backend software, OCPP enables real-time status of charging stations, remote charging session control, firmware management, and error notification.
— OCPP 1.6 is a JSON protocol that was released in 2015 and is the most widely used version in market today. OCPP 2.0 was launched in 2018 and provides major data encryption security updates. OCPP 2.0.1 is the latest version and was launched on March 31, 2020.

3. Stakeholders

OCPP is primarily utilized by charging station product, design, and engineering teams. Key organizations that are stakeholders in the OCPP ecosystem include:

— Open Charge Alliance (OCA):An international consortium of private and public EV infrastructure organizations that leads OCPP development, adoption, and certification.
— Network Management System Providers: GreenLots and ChargeLab are two EV charging network software providers that manage charging stations across manufacturers via OCPP.
— Charging Station Manufacturers: Blink and EVBox are two EV charging station manufacturers that use to connect devices to OCPP supported backend systems.
— EV Drivers:Mobile applications across providers initiate and manage charging sessions.
— EV OEMs: Manufacturers integrate OCPP on the in-car display to manage charging sessions.


4. Implementation

Once a hardware or software company decides to use OCPP, the following steps are taken:
1. The product management team will integrate OCPP in the roadmap and define requirements.
2. The design team will incorporate the OCPP functionality into hardware or software features.
3. Once approved, the engineering team will develop, test, and deploy OCPP features.


Sources


— Open vs. Closed Charging Stations: Advantages and Disadvantages. GreenLots: https://greenlots.com/wp-content/uploads/2018/09/Open-Standards-White-Paper.pdf
— What is OCPP? ChargeLab: https://www.chargelab.co/industry-advocacy/ocpp   
— About Us. Open Charge Alliance: https://www.openchargealliance.org/about-us/about/
— Sources of Greenhouse Gases. EPA: https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions
— Electric Vehicles Setting A Course For 2030. Deloitte Insights:  https://www2.deloitte.com/content/dam/insights/us/articles/22869-electric-vehicles/DI_Electric-Vehicles.pdf

Smog and Los Angeles

  1. In the last two years, the amount of days where ozone levels have exceeded federal standards is increasing. From 113 days in 2015, to 130 in 2016, and 145 in 2017. Los Angeles already claims some of the worst air quality in the United States, and with the threat of a gradually warming planet, the presence of ozone will only increase. One of the most impactful actions in decreasing ozone would be to minimize emissions from diesel engines, in short, taking diesel trucks of the road and replacing with trucks that use natural gas or electricity. While folks like Elon Musk work on making electric trucks a commercial reality, greater efforts need to be made in incentivizing gas engines over diesel.
  2. When it comes to a city like Los Angeles, the activity of the port and commercial transport on diesel trucks are large targets for emissions reductions. This involves local business and trade departments, automakers, distribution companies, and perhaps a Sustainability and/or Mayor’s Office.
  3. The first step would be to halt the future production of diesel trucks. Local governments could also decrease sales tax on trucks using natural gas or alternative energy, and increase sales tax on the sale of diesel trucks. And the same for the sale of diesel versus natural gas at the pump. Like Paris, LA could prevent trucks with diesel engines from entering city limits, or the ports (by a sort of labeling system).

Southern California smog worsens for second straight year despite reduced emissions

L.A., Long Beach ports adopt plan to slash air pollution and go zero-emissions

The death of diesel: has the one-time wonder fuel become the new asbestos?

Raising the Gas Tax Is No Longer Taboo In Many States

New 3D Printed Tire From Biodegradable Materials

 

Capture d’écran 2017-11-25 à 12.59.13.png

Area : Waste, Energy

Description:

75% of tires are made of petroleum (needed for the production of the rubber used). At the end of the products’ life most of them end up in landfills .

Michelin, thanks to a new concept, 3D printed a new kind of tire. The tires are made out of molasse (sugar paste), then turned into ethanol which is used to produce rubber replacing petroleum. Since the tire is only made of natural sources (molasse, bamboo,…), the tire is fully biodegradable.  Although, thanks to the new design of the tires, their useful life should be greatly extended. Indeed, instead of changing tires when a problem arises, the new Vision tire can be modified with a 3D printer.

Sources:

https://www.michelin.com/eng/media-room/press-and-news/michelin-news/Innovation/MICHELIN-Visionary-Concept

https://www.fastcompany.com/40449277/this-new-tire-has-no-air-and-is-3d-printed-from-biodegradable-materials

Stakeholders: Car manufacturers / City officials / Car owners

Implementation:

  • Michelin needs to research markets to find countries/ citis which are early adopters of new technologies;
  • They need to contact the government of this country/city to run some test in the city and have approval of their technology being used
  • They need to find car manufacturers that are also early adopters to pilot their technology

Other article comment: The tiles are also gathering data that can be used for better understanding pedestrians habits and crowd flows . This type of information is useful to commerces but also for cities.

https://makeasmartcity.com/2017/11/09/energy-generating-walkway-no-footstep-wasted/

 

 

Solar Powered Trains

1) Sustainability problem: energy

2)

  • Indian Railways are installing solar panels on 250 local trains to reduce fuel costs and lower emissions. The energy will among other things be used to power lights and fans on the trains. The technology will help advance India’s renewable energy program, especially because the trains mainly will run in areas where there are no electrified tracks.
  • The Indian government has planned that 7000 railway stations will use solar power. By doing this, 25% of the Indian Railways can energy demands can potentially be covered by renewable energy sources by the year 2025.
  • Furthermore, India has stopped the construction of 14 new coal-fired power stations due to the favorable implementation of this technology. As India is such a large market, experts say that this can cause a large shift in the global energy markets.

3)

Stakeholders:

  • Railway companies
  • Solar panel companies
  • Energy companies

 

4)

Implementation:

  1. Incentivize railway companies to make this shift in energy policy
  2. Mount solar panels on train cars
  3. Provide proper maintenance of the solar panels so that they are always working optimally

 

Article reference: https://inhabitat.com/indian-railways-to-install-rooftop-solar-panels-on-250-trains/

5)

My comment on another article https://makeasmartcity.com/2017/10/30/cities-get-smart-by-prioritizing-mobility/comment-page-1/#comment-1348:

“This is a great start to making cities greener. As more and more people establish themselves in the larger cities there needs to be a shift in how people transport themselves from point A to B. Implementing bicycles as a preferred option in the city will also reap huge health benefits for the population as a whole. Health issues are increasing at almost the same pace that large cities are expanding, so this is a solution that can kill two birds with one stone, and help solve both issues at once.

 

UNI: ms5584

The Most Efficient Transportation System in the World: Seoul

171018110323-seoul-urban-planners-traffic-00001704-1024x576Problem:

  • Rapid population increase in Seoul, South Korea, as a result of post-war migration and an economic boom in the 1950’s.
  • There are 50 times more cars on Seoul’s roads now than in the 1970’s.

Solution: Smart Transportation Management

  • In 2004, the city began to overhaul it’s public transportation and road system through the use of data collection and consequently, through monitoring public transport and traffic in real-time.
  • The Seoul Traffic Vision 2030 was presented in 2013, including public transport, roads, side-walks, city railway systems as a systemic recommendation for improvement.

“By 2030, the city of Seoul will have evolved into a city with a highly convenient transport system, where people will not need to rely on their cars.”  – Seoul Traffic Vision 2030

  • Smart ticket systems and cameras monitor subway congestions, road-based sensors monitor traffic flows, and an in-built GPS system monitors taxi movement in the city, which feed into a central system used to post updates on digital roadside billboards and traffic reporting platforms, such as online.
  • Through this, buses, cars and trains can be maneuvered in the most efficient way.
  • The city has also focussed on pedestrianization, getting more people out of cars and onto walkways. An example of this is the Seoullo 7017 walkway, which makes use of an abandoned highway overpass as a new pedestrian route.

Article: How Seoul is using technology to avoid “traffic hell” 

Seoul Traffic Vision 2030: Website

143123783516_20150511.JPG

Seoullo 7017

Stakeholders: 

  • All commuters
  • Municipal government
  • City planners
  • Business owners (large employers of the commuter base population)

Steps to Implementation: 

  1. Sensor installation
  2. Overall system analyses (data collection)
  3. System re-design
  4. Infrastructure improvements
  5. Further sensor installation in new systems
  6. Training of transport officials
  7. Public awareness of alternative routes and optimal travel methods, and availability of platforms to independently track these
  8. Adoption of system commuter recommendations
  9. Measurement and monitoring
  10. Additional installations as technology improves

Comment on Plastic Bottle Concrete: 

Another article on this topic (Link) says that the plastic needs to be irradiated with gamma rays in oder to change the crystalline structure (ie. more cross linkages in the lattice lead to stronger concrete when mixed with plastic). It would be interesting to analyze how much this irradiation process would cost on an industrial scale when incorporated into cement production.

 

 

SMART,CONNECTED ELEVATORS/ESCALATORS CREATE SAFER EXPERIENCE FOR RIDERS

Ch2217 is my uni

 

1)Energy, transportation

 

 

2) https://www.ibm.com/blogs/cloud-computing/2017/03/intelligent-services-elevators-escalators-watson/

 

A smart Internet connected elevator/escalator can alert owners in the event that it needs service before failure, inconvenience or rider injury occurs. It also provides the owner/operator with detailed information on the performance and usage of the equipment.

 

3) The stakeholders are anyone owning or managing a building that utilizes elevators.

 

4) I would market the technology to building management companies and suggest that it might lower insurance rates for the building by reducing the likelihood of rider injury or entrapment.

 

My comment is for the Energy Producing Homes: I wonder if the homes could be manufactured offsite semi-preassembled, further reducing the CO2 footprint of construction.

Smart Urban Growth Tackles Mobility and Electricity Distribution Concurrently

Cities can get smart taking control of their electrical grid and electric vehicle (EV) charging infrastructure as a means of addressing urban growth.  Boulder, Colorado is making a run at it but few outside Germany have taken a serious move in this direction for it requires a long-term vision.  Seeking this urban planning route is not always initiated for economical reasons.  Boulder, for instance, is driven to engage as a means of increasing renewable energy sources in their electricity generation fuel mix.  Here’s the catch, this approach may not a scalable or sustainable solution for all cities  Mega cities; no way anytime soon.  Rural environments; not likely ever needed.  So, Boulder just happens to sit in the Goldilocks Zone but even with it being “just right” the increasing digitalization of the electric grid and new sources of distributed energy will make this endeavor a tenuous pursuit.

Years ago I was involved in dozens of negotiations with municipalities throughout the United States, Canada, and Mexico.  Many desired to “take control” of and then offer, as a public service, wireless Internet services for their citizens.  The complexities in equipment management and selection, maintenance, and budgeting were often solely regarded in the context of whether to make the WiFi a free or a for a fee amenity to subscribers.  Thing is, that’s not where the root challenge existed.  Even a little bit of education in these matters achieved a stakeholder stalemate for trying to figure out how to convert a privatized service into a public good without causing bias to an ongoing free market was no simple matter.  The concept of a public-private partnership was alien.

Dealing with increasing urbanization today requires a systemic stakeholder analysis and just the right sitting of pilot efforts in advance of any at-scale execution plans.  To date few cities have taken this approach but Toronto, Canada is on the way.

“...We are designing a district in Toronto’s Eastern Waterfront to tackle the challenges of urban growth…Sidewalk Toronto will combine forward-thinking urban design and new digital technology to create people-centered neighborhoods that achieve precedent-setting levels of sustainability, affordability, mobility, and economic opportunities” – Sidewalk Labs

To do as Sidewalk Labs proposes there must be an integration of technologies, policies, and financial mechanisms that allow for private and public implementation plans to surface, ones in service of many stakeholders.

  • SAMPLE TECHNOLOGIES AT PLAY
  • IMPLEMENTATION APPROACHES
    • Analyze long-tailpipe electricity generation fuel mixes
    • Promote EVs and pilots ONLY in cities that have clean fuel sources
    • Establish population growth and transport demand metrics
    • Conduct customer interviews to fit future needs
    • Create intelligent city policies to cater to DER and EV microgrids
    • Engage private-sector electric mobility companies
    • Educate citizens on mobility and clean energy options
    • Build neighborhood based pilots
    • Engage citizens via engagement workshops for updates
    • Prepared to pivot for at-scale execution
  • STAKEHOLDERS TO ENGAGE
    • City Planners & Urban Designers
    • Public Entities and Administrators
    • Private Technology Providers
    • EV Manufacturers & Infrastructure Providers
    • Load Balancing Software Solution Providers
    • Private and/or Public Electric Utilities
    • Citizens

 

JMB2408 COMMENT TO ANOTHER BLOG POST (Leaf Plates):

This is an excellent solution to consumption and in turn waste. If this was a compostable solution that can be put to use in the local houseplant or compost pile then we’re talking about a dream conversion in consumption to waste. The other thing that would be amazing is to see this scale to shipping boxes or other high consumption transport items. Awesome find, thanks for sharing.