Smog and Los Angeles

  1. In the last two years, the amount of days where ozone levels have exceeded federal standards is increasing. From 113 days in 2015, to 130 in 2016, and 145 in 2017. Los Angeles already claims some of the worst air quality in the United States, and with the threat of a gradually warming planet, the presence of ozone will only increase. One of the most impactful actions in decreasing ozone would be to minimize emissions from diesel engines, in short, taking diesel trucks of the road and replacing with trucks that use natural gas or electricity. While folks like Elon Musk work on making electric trucks a commercial reality, greater efforts need to be made in incentivizing gas engines over diesel.
  2. When it comes to a city like Los Angeles, the activity of the port and commercial transport on diesel trucks are large targets for emissions reductions. This involves local business and trade departments, automakers, distribution companies, and perhaps a Sustainability and/or Mayor’s Office.
  3. The first step would be to halt the future production of diesel trucks. Local governments could also decrease sales tax on trucks using natural gas or alternative energy, and increase sales tax on the sale of diesel trucks. And the same for the sale of diesel versus natural gas at the pump. Like Paris, LA could prevent trucks with diesel engines from entering city limits, or the ports (by a sort of labeling system).

Southern California smog worsens for second straight year despite reduced emissions

L.A., Long Beach ports adopt plan to slash air pollution and go zero-emissions

The death of diesel: has the one-time wonder fuel become the new asbestos?

Raising the Gas Tax Is No Longer Taboo In Many States

Advertisements

New 3D Printed Tire From Biodegradable Materials

 

Capture d’écran 2017-11-25 à 12.59.13.png

Area : Waste, Energy

Description:

75% of tires are made of petroleum (needed for the production of the rubber used). At the end of the products’ life most of them end up in landfills .

Michelin, thanks to a new concept, 3D printed a new kind of tire. The tires are made out of molasse (sugar paste), then turned into ethanol which is used to produce rubber replacing petroleum. Since the tire is only made of natural sources (molasse, bamboo,…), the tire is fully biodegradable.  Although, thanks to the new design of the tires, their useful life should be greatly extended. Indeed, instead of changing tires when a problem arises, the new Vision tire can be modified with a 3D printer.

Sources:

https://www.michelin.com/eng/media-room/press-and-news/michelin-news/Innovation/MICHELIN-Visionary-Concept

https://www.fastcompany.com/40449277/this-new-tire-has-no-air-and-is-3d-printed-from-biodegradable-materials

Stakeholders: Car manufacturers / City officials / Car owners

Implementation:

  • Michelin needs to research markets to find countries/ citis which are early adopters of new technologies;
  • They need to contact the government of this country/city to run some test in the city and have approval of their technology being used
  • They need to find car manufacturers that are also early adopters to pilot their technology

Other article comment: The tiles are also gathering data that can be used for better understanding pedestrians habits and crowd flows . This type of information is useful to commerces but also for cities.

https://makeasmartcity.com/2017/11/09/energy-generating-walkway-no-footstep-wasted/

 

 

Solar Powered Trains

1) Sustainability problem: energy

2)

  • Indian Railways are installing solar panels on 250 local trains to reduce fuel costs and lower emissions. The energy will among other things be used to power lights and fans on the trains. The technology will help advance India’s renewable energy program, especially because the trains mainly will run in areas where there are no electrified tracks.
  • The Indian government has planned that 7000 railway stations will use solar power. By doing this, 25% of the Indian Railways can energy demands can potentially be covered by renewable energy sources by the year 2025.
  • Furthermore, India has stopped the construction of 14 new coal-fired power stations due to the favorable implementation of this technology. As India is such a large market, experts say that this can cause a large shift in the global energy markets.

3)

Stakeholders:

  • Railway companies
  • Solar panel companies
  • Energy companies

 

4)

Implementation:

  1. Incentivize railway companies to make this shift in energy policy
  2. Mount solar panels on train cars
  3. Provide proper maintenance of the solar panels so that they are always working optimally

 

Article reference: https://inhabitat.com/indian-railways-to-install-rooftop-solar-panels-on-250-trains/

5)

My comment on another article https://makeasmartcity.com/2017/10/30/cities-get-smart-by-prioritizing-mobility/comment-page-1/#comment-1348:

“This is a great start to making cities greener. As more and more people establish themselves in the larger cities there needs to be a shift in how people transport themselves from point A to B. Implementing bicycles as a preferred option in the city will also reap huge health benefits for the population as a whole. Health issues are increasing at almost the same pace that large cities are expanding, so this is a solution that can kill two birds with one stone, and help solve both issues at once.

 

UNI: ms5584

The Most Efficient Transportation System in the World: Seoul

171018110323-seoul-urban-planners-traffic-00001704-1024x576Problem:

  • Rapid population increase in Seoul, South Korea, as a result of post-war migration and an economic boom in the 1950’s.
  • There are 50 times more cars on Seoul’s roads now than in the 1970’s.

Solution: Smart Transportation Management

  • In 2004, the city began to overhaul it’s public transportation and road system through the use of data collection and consequently, through monitoring public transport and traffic in real-time.
  • The Seoul Traffic Vision 2030 was presented in 2013, including public transport, roads, side-walks, city railway systems as a systemic recommendation for improvement.

“By 2030, the city of Seoul will have evolved into a city with a highly convenient transport system, where people will not need to rely on their cars.”  – Seoul Traffic Vision 2030

  • Smart ticket systems and cameras monitor subway congestions, road-based sensors monitor traffic flows, and an in-built GPS system monitors taxi movement in the city, which feed into a central system used to post updates on digital roadside billboards and traffic reporting platforms, such as online.
  • Through this, buses, cars and trains can be maneuvered in the most efficient way.
  • The city has also focussed on pedestrianization, getting more people out of cars and onto walkways. An example of this is the Seoullo 7017 walkway, which makes use of an abandoned highway overpass as a new pedestrian route.

Article: How Seoul is using technology to avoid “traffic hell” 

Seoul Traffic Vision 2030: Website

143123783516_20150511.JPG

Seoullo 7017

Stakeholders: 

  • All commuters
  • Municipal government
  • City planners
  • Business owners (large employers of the commuter base population)

Steps to Implementation: 

  1. Sensor installation
  2. Overall system analyses (data collection)
  3. System re-design
  4. Infrastructure improvements
  5. Further sensor installation in new systems
  6. Training of transport officials
  7. Public awareness of alternative routes and optimal travel methods, and availability of platforms to independently track these
  8. Adoption of system commuter recommendations
  9. Measurement and monitoring
  10. Additional installations as technology improves

Comment on Plastic Bottle Concrete: 

Another article on this topic (Link) says that the plastic needs to be irradiated with gamma rays in oder to change the crystalline structure (ie. more cross linkages in the lattice lead to stronger concrete when mixed with plastic). It would be interesting to analyze how much this irradiation process would cost on an industrial scale when incorporated into cement production.

 

 

SMART,CONNECTED ELEVATORS/ESCALATORS CREATE SAFER EXPERIENCE FOR RIDERS

Ch2217 is my uni

 

1)Energy, transportation

 

 

2) https://www.ibm.com/blogs/cloud-computing/2017/03/intelligent-services-elevators-escalators-watson/

 

A smart Internet connected elevator/escalator can alert owners in the event that it needs service before failure, inconvenience or rider injury occurs. It also provides the owner/operator with detailed information on the performance and usage of the equipment.

 

3) The stakeholders are anyone owning or managing a building that utilizes elevators.

 

4) I would market the technology to building management companies and suggest that it might lower insurance rates for the building by reducing the likelihood of rider injury or entrapment.

 

My comment is for the Energy Producing Homes: I wonder if the homes could be manufactured offsite semi-preassembled, further reducing the CO2 footprint of construction.

Smart Urban Growth Tackles Mobility and Electricity Distribution Concurrently

Cities can get smart taking control of their electrical grid and electric vehicle (EV) charging infrastructure as a means of addressing urban growth.  Boulder, Colorado is making a run at it but few outside Germany have taken a serious move in this direction for it requires a long-term vision.  Seeking this urban planning route is not always initiated for economical reasons.  Boulder, for instance, is driven to engage as a means of increasing renewable energy sources in their electricity generation fuel mix.  Here’s the catch, this approach may not a scalable or sustainable solution for all cities  Mega cities; no way anytime soon.  Rural environments; not likely ever needed.  So, Boulder just happens to sit in the Goldilocks Zone but even with it being “just right” the increasing digitalization of the electric grid and new sources of distributed energy will make this endeavor a tenuous pursuit.

Years ago I was involved in dozens of negotiations with municipalities throughout the United States, Canada, and Mexico.  Many desired to “take control” of and then offer, as a public service, wireless Internet services for their citizens.  The complexities in equipment management and selection, maintenance, and budgeting were often solely regarded in the context of whether to make the WiFi a free or a for a fee amenity to subscribers.  Thing is, that’s not where the root challenge existed.  Even a little bit of education in these matters achieved a stakeholder stalemate for trying to figure out how to convert a privatized service into a public good without causing bias to an ongoing free market was no simple matter.  The concept of a public-private partnership was alien.

Dealing with increasing urbanization today requires a systemic stakeholder analysis and just the right sitting of pilot efforts in advance of any at-scale execution plans.  To date few cities have taken this approach but Toronto, Canada is on the way.

“...We are designing a district in Toronto’s Eastern Waterfront to tackle the challenges of urban growth…Sidewalk Toronto will combine forward-thinking urban design and new digital technology to create people-centered neighborhoods that achieve precedent-setting levels of sustainability, affordability, mobility, and economic opportunities” – Sidewalk Labs

To do as Sidewalk Labs proposes there must be an integration of technologies, policies, and financial mechanisms that allow for private and public implementation plans to surface, ones in service of many stakeholders.

  • SAMPLE TECHNOLOGIES AT PLAY
  • IMPLEMENTATION APPROACHES
    • Analyze long-tailpipe electricity generation fuel mixes
    • Promote EVs and pilots ONLY in cities that have clean fuel sources
    • Establish population growth and transport demand metrics
    • Conduct customer interviews to fit future needs
    • Create intelligent city policies to cater to DER and EV microgrids
    • Engage private-sector electric mobility companies
    • Educate citizens on mobility and clean energy options
    • Build neighborhood based pilots
    • Engage citizens via engagement workshops for updates
    • Prepared to pivot for at-scale execution
  • STAKEHOLDERS TO ENGAGE
    • City Planners & Urban Designers
    • Public Entities and Administrators
    • Private Technology Providers
    • EV Manufacturers & Infrastructure Providers
    • Load Balancing Software Solution Providers
    • Private and/or Public Electric Utilities
    • Citizens

 

JMB2408 COMMENT TO ANOTHER BLOG POST (Leaf Plates):

This is an excellent solution to consumption and in turn waste. If this was a compostable solution that can be put to use in the local houseplant or compost pile then we’re talking about a dream conversion in consumption to waste. The other thing that would be amazing is to see this scale to shipping boxes or other high consumption transport items. Awesome find, thanks for sharing.

Could Virtual Reality help us reduce traveling needs?

1.- Climate change is the result of a mix of carbon emission produced mainly by humans. CO2 emissions, are primarily generated from the combustion of fossil fuels, unfortunately, these have risen dramatically since the start of the industrial revolution.

Transportation plays a major role in the green-hous-gas (GHG) per sector, in fact, according to the UN the global car fleet is expected to triple by 2050. GHG emissions from transport are growing faster than any other sector. (UN)

cait-global-emissions-sectorSource: Center for climate and energy solutions

When we analyze into further details the purposes of transportation, not so much regarding items but specifically humans, there is a significant amount of travels for meetings and business purposes. There is a considerable amount of emissions generated by transporting people to the workspace as well as to meetings in different cities or countries.

2.- Virtual Reality

Virtual Reality headsets with antler-like sensors attached to the goggles enables the user to join a virtual-reality environment in which they see digital avatars of themselves moving around a simulated environment. (Wall Street Journal)

Although conference calls have had a great impact on the way we communicate, there are still some shortfalls, such as limitation of hand gestures, and human contact. The novelty of having an avatar that represents yourself and others in a shared common space enables a set of different interactions.

VR meetings will allow for nuanced nonverbal communication—proper eye contact, subtle cues such as interpersonal distance, and eventually virtual touch and smell (when desired),” Prof. Bailenson– founding director of Stanford University’s Virtual Human Interaction Lab

Virtual-reality systems could replace video conferencing as a common tool for business meetings, that could represent not only time savings but also GHG emission reductions, since traveling for meetings within a city, a country or in the world for meetings won’t be necessary.

3.- The next step to deploy this technology is to improve the internet infrastructure. VR, as well as conference calls, rely on a good internet connection, in many cases is not good enough. Furthermore, enabling VR experiences, through movies and short films can be a compelling start into deploying this technology, by gaining public curiosity and acceptance.

4.- Finally, I see this technology being primarily deployed in the private sector by companies. This could have also a great beneficial impact in terms of cost savings since work travels are expensive, therefore there is a clear incentive for companies to adopt it, and put some effort in the public acceptance. An example of a company working on VR meetings is tvTime.